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ABSTRACT: This paper presents the model predictive control (MPC) application on the solar power system with microturbine
and thermochemical energy storage (TCES). To investigate the potential of a solar-powered turbine, a solar receiver and a TCES are
introduced to the Brayton cycle as the replacement of the combustor. MPC is applied to offer the constrained multi-variable real-
time optimization control. To increase the practicability in the solar industry, a custom-made multi-modeling approach is proposed
based on the close relationship between direct normal irradiance and system states. Feedback correction mechanisms are designed to
improve the prediction and target tracking accuracies. During the regulatory control under both extreme and realistic conditions, the
multi-MPC (MMPC) shows stronger adaptability and reliability than proportional−integration−differentiation (PID) and higher
tracking accuracies than the single-linear-model-based MPC. Although the control performance could be further improved by
employing nonlinear MPC (NMPC), the much longer optimization time of NMPC was unsuitable for real-time control. MMPC is
further adapted to track the grid demand, which is technically unachievable by PID in the current system. While the output power
precisely follows the demand, the performance parameters can still stay close to their design values, retaining a high system
efficiency. Overall, the proposed MMPC enables power demand tracking operation of solar air turbine systems, and can ensure high
stability and system efficiency.

1. INTRODUCTION
There is a growing trend toward large-scale applications of
clean renewable energies, such as, photovoltaic, wind power
generation, and so on. The unstable and intermittent nature of
renewable energies imposes a great impact on the regulation
capability of the power system. The solar-powered gas turbine
system with thermal energy storage (TES) is a promising
solution to this. The fast dynamic response characteristics of
gas turbine makes it a prime candidate as a peaking unit which
responds to the load demand.1 Furthermore, compared to the
conventional solar steam turbine systems, the gas turbine
system is a better match to the next-generation concentrated
solar power (CSP) generation technology, thanks to its higher
operating temperature, lower water consumption,2,3 and more
modest capital cost.4 Compared to the traditional fossil fuel
fired gas turbine systems, on the other hand, the introduction
of CSP contributes to the environmental benefits by reducing

pollutant emissions and fossil fuel consumption. The
integration of TES further increases the solar share by
redistributing the thermal energy on the time scale. Moreover,
its large thermal inertia also helps stabilizing turbine operation
by mitigating the influence of climate condition changes.5,6

Among the TES medium candidates, thermochemical energy
storage (TCES), especially the metal-oxide, shows superior
advantages of high energy density, high storage temperature,
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and good compatibility with air.7−9 Thus, metal-oxide-based
TCES is suitable for the solar-powered gas turbine system.

The research exploration of the solar-powered gas turbine
system started in the 1990s. At first, fossil fuel combustion was
preserved as the supplementary power, so TES was not
considered. The solar hybrid gas turbine electric power system
(SOLGATE) demonstrated the first solar tower micro gas
turbine (MGT) system with a 230 kWe generation and a nearly
60% solar share,10−12 followed by the solar-hybrid power and
cogeneration plants (SOLHYCO)13−16 and solar up-scale gas
turbine system (SOLUGAS),2,17,18 which gradually took the
solar hybrid gas turbine system toward commercialization and
MW-level. AORA solar accomplished the first two commercial
solar hybrid gas turbine co-generation plants in Israel (2009)
and Spain (2012), respectively.19 A solar-only MGT system
was constructed by the optimized microturbine solar power
system project (OMSoP) with the operation and control
strategies proposed accordingly.20,21 As the gas turbine
solarization technology developed and matured, TES is
integrated in pursuit of elevated solar share and prolonged
operation duration. The Commonwealth Scientific and
Industrial Research Organization (CSIRO) and Mitsubishi
Heavy Industries (MHI) studied the integration of solar air
turbine with TES via component experiments and system
simulations.22,23 In our previous work, the solar-only MGT
system is studied with the addition of TCES in the CSP MGT
with TES (SolGATS) project.9 Real-time control strategies
based on proportional−integration−differentiation (PID)
controllers have been proposed and implemented in
thermodynamic simulations.6 This paper is the further
investigation on the real-time system control.

In terms of real-time control, TES imposes a great challenge
on solar-powered system control because its transient
behaviors are highly affected by solar irradiance in both
short-term and long-term ways.24 In most TES-based solar
systems, flow rate control is the most popular control strategy.
The execution units are either pumps24,25 or valves,6,26 or the
combination of both.27−36 In some cases, the classical PID
controller can satisfy the control requirements.24,26,32,37

However, with the increasing system complexity, more
advanced methods were attempted in TES-based solar system
control. For example, the supervisory control structure is
applied to solar cooling systems with storage tanks27,28 and a
combined cycle power plant with double-tank molten-salt
storage,31 respectively. The hierarchical scheme decomposes
the control tasks and allocates them to different controllers,
saving computational efforts while maintaining benign control
performance. Navas et al.36 included the modeling of passing
clouds in the model predictive control (MPC) implementation
on a solar thermal plant with double-tank molten-salt TES.
The proposed MPC improved the amount of energy storage
while keeping the generated electricity power on its nominal
value. Loṕez-Alvarez et al.38 focused on the optimal operation
of the start-up process of thermal solar plants with energy
storage tanks. By minimizing the start-up time, power demands
could be satisfied more efficiently. There is also research work
focusing on the control of the TES subsystem itself. Leo et al.34

used linear quadratic regulator with integral action of output to
regulate the outlet oil temperature and the tank level of the
molten-salt TES. Prieto et al.30,33,35 compared different control
strategies, namely, feed-forward PID, feed-forward advanced
PID, and feed-forward adaptive-predictive control and found
that the third strategy presented the best stability and setpoint

tracking performance. The hierarchical control scheme is also
performed in the power industry. Juuso et al.29 adopted a PI-
type linguistic equation controller with predefined adaptation
models on a solar collector field and designed intelligent
analyzers to achieve smart working point control. Patroń et
al.39 designed a three-layer controller for post-combustion
carbon capture plants, including real-time optimization,
nonlinear MPC (NMPC), and moving horizon estimation.
The proposed scheme effectively improved the process
economics of the plants.

Unlike the solar systems mentioned above, the studied
system in this work uses gas turbine for power generation. The
system control in this case faces other challenges. Compared to
the steam turbine systems which is the most popular power
block choice in TES-based solar thermal power plants
currently, gas turbine is well-known for its rapid response
and compactness. The volume and thermal inertias of the
additional solar components are much larger than the gas
turbine itself, plus the highly coupled cycle structure, the
complexity and difficulties in system dynamic control are
significantly increased. Furthermore, the thermochemical
reaction adds to the system’s nonlinearity. To accomplish
the solar-powered system control with gas turbine and TES,
the gas turbine control is also of vital importance.

Many research efforts have been made in gas turbine control.
Although most of them are the single-loop, non-recuperative
Brayton cycle, they can still offer reference value. Besides the
PID control40 which has been widely used in commercial gas
turbines, more advanced control methods are investigated to
meet the increasing requirements. MPC stands out due to its
advantage of constraints handling in multi-variable system
control.41 The abilities to foresee future events and conduct
online optimization make it more competent to deal with
disturbances.42 The feasibility of MPC in gas turbine control
was first investigated by Vroemen et al.43 and implemented in
the real-time control experiment by Essen et al.41,44 Based on
the successively linearized models and a first-order integrating
filter, the NMPC performs well in constrained reference
trajectory tracking. Diwanji et al.45 developed a Weiner−
Laguerre−ANN prediction model and applied NMPC in single
spool gas turbine, proving the applicability of MPC in fast-
dynamics nonlinear systems. To improve the control perform-
ance, Jurado42,46 applied the Hammerstein model to perform
NMPC on microturbine and used the internal model control
scheme to deal with the mismatch and disturbances. Wiese et
al.47 reduced the prediction model order, augmented the
optimization problem with integral action, and proved the
advantages of NMPC. Mu and Rees48−50 conducted online
linearization and incorporated generalize predictive control
(GPC) to control the gas turbine engine. Some researchers
focused on accelerating the calculation speed and developed
the block MPC51 and the fast-MPC.52 Martucci et al.53 added
a terminal weight term at the objective function to shorten the
prediction horizon and hence speed up the calculation. MPC
was also proved superior than PID and commercial control
system in heavy-duty gas turbine control with shorter settling
time and less oscillations.54,55 For combined cycle gas turbine
system, fuzzy predictive supervisory control56 and GPC57 were
also attempted.

The nonlinear system dynamics imposes great challenges on
model-based controller design. However, the acquirement of a
comprehensive plant model is often difficult and time-
consuming.58 Moreover, the models which are able to retain

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.2c01784
Ind. Eng. Chem. Res. 2022, 61, 13532−13558

13533

pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.2c01784?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


high prediction accuracy over wide operational ranges would
require large computational efforts in receding horizon
optimization, which is detrimental to real-time control.59

Especially in large-scale application, linear or simple nonlinear
prediction models usually prove stronger practicality than
comprehensive nonlinear models.60 On these basis, multi-
model prediction control (MMPC) is developed. The main
challenges of MMPC can be concluded in three aspects: the
model division, model construction, and the model aggrega-
tion.61 Venkat et al.61 divided the operation regimes according
to the input−output steady-state map using the fuzzy
clustering technique and employed the projection technique
for fuzzy aggregation. By introducing fuzziness to the clustering
process, the overlaps of subspaces can smoothen the transition
between local models. Schott and Bequette62 combine the
multiple local models by estimating the probabilities of each
model using recursive Bayesian theorem. The resulting multi-
model adaptive control presented an improved performance
when moving from open-loop stable regions to open-loop
unstable regions. The fuzzy modeling and recursive Bayesian
probability weight were also attempted in the boiler turbine
system.63 Besides, fuzzy weight is often calculated for model
aggregation in fuzzy-model-based MPCs.64,65 Kordon et al.66

computed multiple linear-model-based linear controllers in
parallel in order to avoid unsmooth transition when switching
between local models. A concurrency coordinator is used to
compare all controllers’ control errors and decide the next
control action. As a result, stable and good closed-loop
performance and bumpless transitions were obtained. More
advanced algorithms are implemented to further improve the
prediction precision. Wu et al.67−69 adopted recurrent neural
network and ensemble learning to improve the prediction
accuracy and closed-loop performance. By using different
initial weight matrices in ensemble learning, local optimum
might be avoided. The ensemble regression modeling
technique incorporated with MPC proved good robustness
and effectiveness.

Despite these research achievements, there still exist
limitations in MPC applications on TES-based solar gas
turbine system control:

MPC is mostly implemented in the conventional non-
recuperated Brayton cycle. The control methods are also
mostly limited to the responsive fuel flow regulation. Even for
the combined cycle control, the control strategies still focus on
the gas turbine or TES itself, only with different controlled
variables. With the promotion of gas turbine solarization, the

system control is facing new challenges. The TCES-based solar
air turbine system control in this work has to deal with
different disturbances and manipulated variables. Thus, a new
control strategy needs to be proposed.

Furthermore, the increasing cycle complexity and environ-
mental uncertainty in the solar gas turbine system need to be
comprehensively considered in system control. For example,
the control strategies for short-period and long-period weather
changes should be distinguished. System constraints and multi-
variable control scenarios should also be considered in an
optimized way. As the number of controlled variables
increases, applying multiple PID control loops would massively
increase the control scheme’s complexity. Therefore, more
advanced and reliable real-time control approaches should be
adopted.

In the solar-powered gas turbine system, the influence of the
fluctuating nature of solar irradiance is enhanced by the
concentration technology. The thermochemical dynamics of
TCES also adds to the system nonlinearity. The highly coupled
cycle configuration, plus the difference between the large-
inertia solar components and the fast-dynamics turbomachi-
nery, further increases the complexity of system transient
response. All these factors add to the difficulties of system
control, yet they are seldom regarded in the existing
publications.

Last but not least, the increasing installed capacity of
unsteady renewable energies calls for their abilities to follow
the load demand. Usually, the renewable energies are
influenced by climate conditions and would lead to severe
instability of power grid once they are connected on a large
scale. Currently, the load demand tracking function is mainly
handled by fuel flow regulation in the conventional gas turbine
system, which is unachievable in the presented solar-only
system. Moreover, it would be of vital significance if the
demand tracking can be handled without the help of fossil fuel
consumption.

Motivated by the concluded research gaps, this work
continues the previous work on the control strategy
investigation of a solar power system with microturbine and
TCES6 and implements MPC for the constrained multi-
variable real-time optimization control for different applica-
tions. The operation safety, disturbance rejection, and setpoint
tracking performance during wide-span off-design operation
are accomplished well. The contribution of the presented work
is summarized in the following aspects:

Figure 1. System scheme of the solar power system with microturbine and TCES (red: high-temperature airflow; blue: low-temperature airflow;
and yellow: solar irradiance).
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(1) System nonlinearity is handled by a multi-modeling
method, which is customized based on the close
relationship between direct normal irradiance (DNI)
and system states. The proposed modeling method
exhibits high practicability in the CSP industry.

(2) To improve the setpoint tracking performance, feedback
correction mechanisms are specially designed from three
different aspects, and the prediction errors and tracking
deviations are successfully reduced.

(3) With the help of MPC, the solar air turbine system is
able to follow the grid power demand fast and
accurately. This is unachievable by PID because the
output power serves as the manipulated variable in this
case. The improvement of dispatchability is of vital
significance for the rapid and vast development of
renewable energies.

2. SOLAR POWER SYSTEM WITH MICROTURBINE
AND TCES

The solar power system with microturbine and TCES in this
work is an open-loop recuperated Brayton cycle with a high-
temperature solar receiver and a TCES unit. It should be noted
that there is no combustor in the studied system, so that we
can focus on the control strategy independent of the
conventional fuel combustion. The system scheme is shown
in Figure 1. The ambient air is compressed and preheated by
the compressor and recuperator, respectively. Then, the
pressurized and preheated air was further heated up to >800
°C in the solar receiver by the concentrated solar irradiance.
The downstream TCES unit can adjust the turbine inlet
temperature by absorbing the redundant energy or releasing
the stored energy. Also, the large thermal inertia of TCES unit
can help stabilize the air condition in the turbine inlet.
Afterward, the high-temperature pressurized air expands in
turbine and drives the rotor to rotate at a high speed. The
high-speed alternator (HSA) connected to the compressor and
turbine therefore generates electricity power which is then fed
to the grid after being regulated by a rectifier and an inverter.
The turbine exhaust air is then discharged to the atmosphere
after heat recovery in the recuperator. The valve in parallel
with TCES is a regulating valve, which decides the amount of
the stored/released heat during operation. The design
parameters of the major components are introduced in our
previous work.6

In terms of system control, the rotational speed (N) of the
shaft which connects the compressor, turbine, and the HSA,
and the turbine outlet temperature (TOT) are supposed to be
constant at their design point, in order to achieve favorable
overall performance, for example, high thermal-to-electricity
efficiency. Based on the system characteristics, the output
electricity power and the bypass ratio of TCES unit are
implemented as the manipulated variables.6

3. MODEL CONSTRUCTION
This section constructs the prediction model for MPC
applications. For the current system, building a first-principle
nonlinear model is highly complicated. Multiple nonlinear
heat-transfer empirical equations have been used in heat
exchanger models to consider the convective and radiative
heat-transfer effects through insulations, with ambient air and
within airflow channels. More importantly, some of the
component models cannot obtain an analytic form. For

example, the calculations of the compressor and turbine
models need to look up the performance characteristic maps or
tables, which adds to its difficulties to apply in MPC.

The online optimization mechanism in MPC calls for the
need to lower the calculation complexity and save the
computational efforts, so the linear state-space model is used
to manifest the system characteristics.

3.1. System Identification for the TCES-Based Solar
Air Turbine System. To facilitate the MPC implementation,
the linear state-space model is identified according to the
transient operational data provided by the high-fidelity
MATLAB/Simulink model, which was developed and
validated in our previous work.6 The discrete-time linear
state-space model consisting of seven specific measurable states
is identified according to the transient responses.

+ = + +

=

x Ax B u B

y Cx

k k k d k

k k

( 1) ( ) ( ) ( )

( ) ( )

u d

(1)

where x n, u p, d , and y n are the states,
control inputs, disturbance, and outputs. ×A n n, ×B n p

u

, ×B n
d

1, and ×C n n are the coefficient matrices derived
from the identified coefficients in the multiple-input−multiple-
output (MIMO) model. Specifically, the state, input, and
output vectors are defined as eqs 2−5, considering the
thermodynamic characteristics of each component. The state
parameters cover the critical performance indicators in each
component, so that the identified model can approach the
thermodynamic behaviors as much as possible. The control
inputs are the manipulated variables, that is, the output
electrical power, PWout, and the valve opening, VO, while the
disturbance input is the DNI. The output variables are the
control targets, that is, the TOT and the turbine rotational
speed, N. The sampling times of the discrete−time state-space
model and MPC are the same as that of the Simulink model,
that is, 0.1 s.

= [ ]
= [

]

x k x k x k x k

P k T k T k T k T k

TOT k N k
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p
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1 2
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=d k DNI k( ) ( ) (4)

= [ ]y k TOT k N k( ) ( ), ( ) T (5)

where P2 is the outlet pressure of the compressor, TM,rcp and
TM,rcv are the core temperature of the recuperator and receiver,
respectively, Tg,ave and Ts,ave are the average temperature of the
air and solid core in TCES, respectively, TOT is the turbine
outlet temperature, and N is the turbine rotational speed.

The main goal of identification is to calculate the coefficient
matrices, which describe the relationships between the present
system inputs, present system states, and the next moment’s
system states. Since the input and state vectors have been
settled, disregarding the measurement errors, the multi-variable
linear regression method is adopted to obtain the MIMO state-
space models. In the view of industrial applications, the
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proposed modeling method has high practicability and is easy
to implement in practice.

3.2. Multi-Modeling Method for the TCES-Based
Solar Air Turbine System. Compared to nonlinear models,
the linearized model may cause large prediction errors when
the situation deviates far from the design condition, so a multi-
modeling approach is implemented to better handle the wide-
span off-design situations.

In order to decide the division of the prediction model into
multiple ones, the operational steady states of the power
system are analyzed with respect to different DNIs and
operation strategies because DNI is one of the most important
indicators in the CSP industry. The two most important
performance indicators are taken as examples, that is, N and
TOT. According to the previous investigation on the proposed
system,6 under varied DNI conditions, when either of them is
kept constant at design point, that is, 120 krpm and 923 K,
respectively, the system’s optimum steady states are calculated
and displayed on the performance maps of the compressor and
turbine, as shown in Figure 2. These performance maps are
vital analytical tools of turbomachinery components’ working
performance. The solid lines in display are the constant
corrected speed lines. The dash lines are the maximum
isentropic efficiency lines. The operation state is expected to be
closer to the dash lines, where the compressor and turbine’s
performances are better.

Intuitively, these two operation strategies show different but
complementary characteristics. The patterns of constant N
operation are similar to the constant corrected speed lines
(black solid lines) and its state changes less, while those of
constant TOT operations adhere to the maximum isentropic
efficiency line and yet vary a lot wider than constant N
operations. The authors hope to combine the advantages of
both strategies, so both N and TOT’s setpoints tracing are
considered in the following sections. In the practical
application, the operation region would be around these
presented colorful points.

Another important conclusion is that the variations of the
performances are consistent with that of DNI. The system
states are mainly determined by the energy equilibrium
between the input, storage, and output. The energy storage
is restricted by its large thermal inertia and relatively small
energy density compared to the CSP, while the output
electrical power has better flexibility in the grid-connected

scenario and serves as the manipulated variable. DNI is the
critical influencing factor on system states. Plus, as the basic
performance indicator of solar energy, it is of convenient
availability in solar power plants. Thus, by partitioning the
models with respect to different DNIs, the system states are
divided in an organized way.

To further explore the relationship between DNI and
system’s state transition pattern, 25 linear state-space models
are identified every 12.5 W/m2, ranging from 550 to 850 W/
m2 (basically covering the whole operation scale of DNI in
practice). Each model centers at a certain DNI and covers
around ±20 W/m2. The variation patterns of the state
transition matrix, A, and the input coefficient matrix, B, of
the 25 state-space models are investigated.

First, linear regression on each element of the matrices was
conducted. Results showed that the fitting degree indicators,
R2, are higher than 0.85 for 41% and 86% elements in A and B,
respectively. Moreover, for every three successive models,
linear interpolation was conducted with the two side models to
obtain a new middle model. The distance between the two
middle models is considered as an indicator of the nonlinearity
between these three models. As displayed in Figure 3, with the

variation of DNI, the distances of both matrices A and B vary
on the same scale. Thus, despite the existence of nonlinearity
to some extents, the variations of state transition matrix and
input coefficient matrix are basically consistent, so it should be
viable to partition the models along with DNI in a uniform
manner.

Ideally, the partition interval should be as thin as possible in
pursuit of the best prediction accuracy. However, it would
impose great computational burden on the processor and is

Figure 2. Performance maps under constant N and constant TOT operation strategies (each point represents a steady operational state. PR:
pressure ratio, ER: expansion ratio, and DNI: direct normal irradiance. The surge and choke areas are beyond the areas that solid lines cover).

Figure 3. Distribution of the distances of matrices A and B.
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impractical in the industrial application. To demonstrate the
feasibility of MMPC, three linearized models are used to
predict the system dynamic response on the DNI scale of 550−
850 W/m2.

An optimization problem is built to decide the partitioning.
The whole DNI scale is divided in three sections. In each
section, the distances between every two models’ matrices A or
B are calculated, in order to characterize the similarities of the
models in the same section. The sum of all distances in three
sections is then minimized through optimization. The optimal
partitioning plans for matrix A and B are centering 600, 712.5,
812.5 and 575, 662.5, 800 W/m2, respectively. Therefore,
regarding both optimization results, three linear models
centering on 600, 700, and 800 W/m2 are chosen for
MMPC implementation in the following sections. Note that
the combination of 600, 700, and 800 W/m2 is also one of the
local minima, and its objective function’s value is very close to
the global optimum results.

Overall, the abovementioned system identification and
multi-modeling methods are proposed by taking advantage of
the close relationship between DNI and system state. They can
provide high practicability and reliability in the CSP industry
application.

Remark 1
The majority of the current work has been conducted in

simulations which, however, cannot completely reflect the
characteristic of the real situations. There is an inevitable
disparity between the nonlinear model we derived and the real-
world condition. Thus, to obtain a fair result, it is more
valuable to perform the comparison between NMPC and
MMPC, according to real objects and real dynamic processes.
Alternatively, there is another potential way to approximate the
realistic condition, that is, to consider uncertainty in prediction
model parameters.70,71 When system parameters are uncertain
and with probability distributions, the closed-loop nonlinear

behaviors can be treated as a linear model with uncertainties.
Although the control performance superiority over using the
nonlinear model is not guaranteed, the process nonlinearities
resulted from the disturbances are included. By using this
robust modeling method, the process variability and feasibility
can be evaluated, and the asymptotic stability can also be
strictly enforced. However, the presented work focuses on the
multi-modeling approach, so this will not be discussed in
further detail.

3.3. Linear Model Validation. In this section, three
prediction models are identified near the design point (DNI =
800 W/m2) via multi-variable linear regression, centering on
600, 700, and 800 W/m2, respectively, with ≤50 W/m2

variation. For comparison, another linear prediction model
covering 600−800 W/m2 is also identified for MPC.

To generate the transient response data, the Simulink model
starts with a specific DNI, which is the central value of the
operating DNI range. The DNI is kept constant until the
system reaches steady state. After this, the data collection for
model identification begins, and multiple step changes of
system inputs are imposed. Given the fact that without any
control actions, the solar air turbine system would be highly
unstable, the transient data for identification are therefore
obtained in the constant speed mode with power regulation.6

The input signals after the beginning of data collection are
displayed in Figure 4. Each diagram displays one model’s input
signals. The sampling time is 0.1 s. The value of the step-
change frequency is chosen based on the different response
rates of the physical parameters. The time constants of the
temperatures are at minute-to-hour scale, while those of the
pressure and rotational speed are at millisecond-to-second
scale. The step-change frequency is finally determined through
multiple tests, which aim at improving the prediction
accuracies of the identified models.

Figure 4. Input signals for model identification.
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The regression and dynamic simulation errors of these
identified models are summarized in Table 1. Regression error
is the assessment of the fitting performance of linear regression.
Dynamic simulation error represents the fitting performance
between the identification data and the dynamic state response
data generated by the identified state-space model using the
same input sequence. Note that the dynamic simulation results,
although obtained with the same input sequence, are
influenced by the error accumulation from each time step,
therefore proving the model’s practicability in dynamic
applications. The simulation duration of each dynamic
simulation is 90 s (900 sampling times), which is much longer
than the prediction horizon in the following work, that is, 1 s
(10 sampling times).

As shown in Table 1, the regression errors are generally low.
Some of the errors are below 0.001 K or 0.001 krpm, so they
are not displayed due to the significant figures. In terms of the
dynamic simulation errors, model #4’s errors are mostly larger
than the others because of its wider DNI span in its
identification data. Such a difference is more pronounced in
P2, TOT, and N, resulting from the faster dynamics in
turbomachinery components. This also indicates the bigger
challenge in turbine control.

Nonetheless, the overall dynamic simulation errors are at a
low level, plus the long simulation or to say error accumulation
time, it can be safely concluded that the linearized models
obtained from the proposed model construction method are
able to represent the nonlinear TCES-based solar air turbine
system with high prediction accuracy and physical interpret-
ability.

4. REGULATORY CONTROL
In this section, in order to ensure system stability in off-design
operations and state transitions, an MMPC controller is
designed for regulatory control, including multiple setpoints
tracking and steady design point operation under actual
weather conditions. The controllers’ performances are
discussed in comparison with three different controllers,
namely, the PID control from our previous work, the single-
model-based MPC, and a first-principle-model-based NMPC.
In pursuit of fair performance comparison, feedback correction
is also applied to MPC and NMPC. There is no feedback
correction in PID due to the absence of model prediction in
PID and its ability to eliminate control deviation via
integration.

4.1. MMPC for Regulatory Control. Figure 5 shows the
proposed MMPC scheme for regulatory control. It is built on
the basis of several prediction models. During MMPC
operation, all the prediction models function simultaneously
based on the real-time measured states x(k) and disturbance
d(k). The measured states are used as the initial states of the
prediction models as a part of the feedback correction
mechanism. Under normal circumstances, the disturbance,
that is, DNI, is monitored in real time in each solar power
plant. If accidental equipment failure occurs and measured
DNI is unavailable, the d(k) can be treated equal to the last
monitored value or the average DNI value derived from the
historical data. The predicted outputs y ̂ of each model are then
weighted into one to offer a comprehensive model output
prediction, based on which the optimizer calculates the optimal
control instructions. The optimization problem, as explained in
eq 6, is to minimize the deviations of N and TOT from their

Table 1. Regression and Dynamic Simulation Errors of the Linear Model Identificationa

aThe data are displayed with three significant figures.
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desired values and the increments of manipulated variables,
that is, PWout and VO.

= +

+ = + +

=

y y u

x Ax B u B

y Cx

u u u

J k k k k

k k k d k

k k

k

min ( ) ( ) ( ) ( )

s. t. ( 1) ( ) ( ) ( )

( ) ( )

( )

Q R

u d

set cor cor

min max

,
2 2

(6)

where yset,cor and ŷcor are the setpoint and the predicted
outputs after feedback correction, respectively, Δu is the
increments of system inputs, k is the current sampling step, Q
and R are the penalty coefficient matrices, Q = diag(QTOT,
QN), QTOT = diag[qTOT(1), ..., qTOT(P)], QN = diag[qN(1), ...,
qN(P)], R = diag(RPWout, RVO), RPWout = diag[rPWout (1), ...,
rPWout (M)], RVO = diag[rVO (1), ..., rVO (M)], and q and r are
the penalty coefficients. If setpoint tracking has the priority,
then the value of q should be increased. If smooth operation of

manipulated variables is more important, then the value of r
should be increased. By regulating the relative value of different
qs, the control preference of N and TOT can be adjusted,
respectively. The same goes for the rs with PWout and VO. P
and M are the prediction horizon and control horizon,
respectively. They are set as 1 s (10 sampling times) and 0.2 s
(2 sampling times), respectively, regarding both control
performance and computational efforts. The physical limi-
tations of the manipulated variables are also considered in the
optimizers as hard constraints.

Thereafter, the final adopted control instruction u(k + 1)
would act on the plant model in the next sampling period.
Before that, u(k + 1) also acts on all the prediction models to
obtain new predicted outputs, the weighted results of which
are consequently used to calculate the prediction errors, ep, for
feedback correction on the predicted outputs. As explained in
eqs 7−9, the one-step prediction errors are accumulated since
the simulation starts and compensate for the latest predicted
outputs.

Figure 5. Schematic of MMPC for regulatory control (blue: prediction model and optimizer; green: plant model; and orange: feedback correction.
The dash line indicates the state transition between the adjacent time steps. The single MPC mechanism is further explained in the extension
block).
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where y ̂ is the predicted outputs, hp is the correction
coefficient, and ep is the accumulated historical prediction
errors.

Another feedback correction mechanism is designed to
eliminate the control deviations. The setpoint values for the
open-loop optimization are regulated by the accumulation of
the tracking errors. As introduced in 10, the deviations of
system outputs from their setpoints are accumulated and serve
as a compensation offset of the setpoints.
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where yset is the setpoints of system outputs, hc is the
correction coefficient, and ec is the accumulated historical
control deviations.

The weighting mechanisms in optimizer and feedback
correction are the same, and they are designed according to
the DNI conditions. As explained in eq 13, the closer DNI(k)
approaches to DNIi, the larger the weight is. The newly
predicted outputs ensures that the model predictions are
conducted with the same inputs of the plant system, thus

Figure 6. MMPC performances with and without feedback corrections (blue: without prediction nor control corrections; red: with prediction
correction; green: with prediction and control corrections; solid line: system inputs and outputs, setpoints; and dash line: predicted outputs).

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.2c01784
Ind. Eng. Chem. Res. 2022, 61, 13532−13558

13540

https://pubs.acs.org/doi/10.1021/acs.iecr.2c01784?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01784?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01784?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01784?fig=fig6&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.2c01784?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


improving the prediction correction performance. Due to the
fact that DNI is unpredictable in the current work and the
prediction horizon is set as 1 s, it should be safe to consider
DNI constant within the prediction horizon and so is the
computed weight.
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where DNIi is the center DNI value during model identification
and n is the total number of prediction models.

The open-loop finite-horizon optimization is conducted
afterward using the sequential quadratic programming
algorithm in MATLAB toolbox. Only the first element of the
optimal input vector, that is, u(k + 1), is then applied to the
mathematical model for the next sampling period. The same
procedure is repeated in the next time step with updated initial
states for the prediction models, thus forming the receding
horizon optimization mechanism in MMPC.

Figure 6 compares the closed-loop MMPC performances
with different degrees of feedback corrections. The setpoints of
N and TOT are 120 krpm and 923 K, respectively, and the
system starts at a steady state of 120 krpm and 860 K. DNI

stays at 800 W/m2 during the whole simulation. The
prediction correction coefficients, hp, for N and TOT are 0.1
and 0.13, respectively. The control correction coefficients, hc,
for N and TOT are −0.1 and −0.1, respectively. The penalty
coefficients q for N and TOT are 80 and 10, respectively. The
penalty coefficients r for PWout and VO are 5 and 0.5,
respectively.

In the absence of both the prediction and control
corrections (blue), there exist some small yet improvable
control deviations in the resultant N and TOT, that is, 0.55
krpm (0.5%) and 14 K (1.5%), respectively, with prediction
errors of 0.1 krpm (0.08%) and 31 K (3.4%), respectively. By
introducing the prediction correction mechanism (red), the
prediction errors are reduced to <0.001 krpm (0.001%) and
<0.3 K (0.03%), respectively. The N control deviation also
decreases to <0.01 krpm (0.01%). However, the TOT control
deviation increases to 71 K (7.7%), proving the limitations in
prediction correction. Only the one-step prediction errors
participate in the feedback correction, while the errors in the
rest of the prediction horizon show different patterns which
cannot be entirely compensated. To address this problem,
control correction is implemented (green), and the prediction
errors and control deviations of N and TOT are all reduced to
<0.01% consequently.

Figure 7. Transient response of step-change setpoint tracking (each column represents different DNI conditions. Each row displays different
variables. Yellow solid line: PID; red dash line: MPC; blue dotted line: NMPC; green solid line: MMPC; and black dash line: setpoint).

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.2c01784
Ind. Eng. Chem. Res. 2022, 61, 13532−13558

13541

https://pubs.acs.org/doi/10.1021/acs.iecr.2c01784?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01784?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01784?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c01784?fig=fig7&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.2c01784?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4.2. Case Study. In this section, the MMPC regulatory
control performances under different application scenarios are
studied in comparison with PID, MPC, and NMPC control.
The step-change setpoint tracking is first conducted to evaluate
the controllers’ reliability under extreme conditions. Then, the
controllers are tested in design point operation under actual
DNI variation to prove their practicability of long-running
operation in representative realistic conditions. The PID
controller was tuned regarding several application scenarios,
and its final parameters were determined based on the
comprehensive control performance among multiple test
conditions. The related performance results have been
published in our previous work.6 The NMPC basically shares
the same setups as MMPC, except for the adjustments in
manipulated variable’s upper bound and the penalty
coefficients. The adjustments were found necessary due to
the major change in the predicted transient response.

Remark 2
Theoretically, multiple PID controllers can be employed to

improve the single PID controller’s performance, similar to the

fact that MMPC outperforms MPC by taking advantage of the
system dynamics in multiple operating points. However, PID is
not equipped with the advantages in MPC, such as, constraints
handling and optimization. We therefore believe that the
multiple-PID control scheme might not observably boost the
control performance, while its advantage of simplicity is
compromised due to the increasing complexity. Therefore, the
comparison between multi-PID control and MMPC is
considered of limited value, and the further investigation is
unnecessary.

4.2.1. Step-Change Setpoint Tracking. Figure 7 displays
the results of the step-change setpoint tracking test. The
simulation starts at the steady state of DNI = 850 W/m2, N =
120 krpm, and TOT = 923 K. In each DNI condition, namely,
850, 750, 650, and 550 W/m2, a 1 krpm Nset step-change and a
30 K TOTset step-change occur in sequence. Although the PID
controller can perform smoothly under smaller Nset step-
changes, it causes dangerous operating conditions, and the
system pauses at the 1 krpm Nset step changes. To continue the
control task, a rate limiter needs to be added between the Nset

Table 2. Control Performance of Setpoint Trackinga

aThe data are displayed with three significant figures. RMSE is the root-mean-square error, E is the mathematical expectation, and OS is the
overshoot. MMPC’s improvements = MPC/NMPC’s value − MMPC’s value. Green: positive improvements and red: degressions.
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instruction and PID controller. However, for a fair comparison,
the PID (blue) performance, as shown in Figure 7, is obtained
without the rate limiter. The MPC, NMPC, and MMPC
controllers, on the other hand, can still operate in benign
conditions without any rate limiters. It can be observed
intuitively that MMPC (green) causes smaller fluctuations and
stabilizes more rapidly than MPC (red). The comparison
between NMPC (blue) and MMPC, on the other hand, is
more subtle. In general, the NMPC displays slightly smoother
transitions and smaller overshoots than MMPC.

Table 2 summarizes the performance indicators for
quantitative comparison between MPC, NMPC, and MMPC.
Root-mean-square error (RMSE) indicates the overall setpoint
tracking deviation during the whole simulation. The
mathematical expectations (E) of the manipulated variables’
increments and the overshoot values (OS) of the controlled
variables evaluate the transient response performance.

In comparison with MPC, MMPC presents overall better
setpoint tracking performance and smoother state transition,
thanks to its higher prediction accuracy. MMPC follows the
Nset and TOTset more tightly under all DNI conditions, with

average RMSE improvements of 0.059 krpm (33.74%) and
0.305 K (9.8%), respectively. MMPC also reduces the average
overshoots of N and TOT by 0.232 krpm (29.03%) and 4.333
K (13.39%), respectively, which is an appreciable improve-
ment. The average changing rate of the manipulated variables
in MMPC is also 0.166 kWe/s (42.24%) and 0.085%/s
(10.98%) slower, respectively.

Nevertheless, the overall control performance is further
improved in NMPC due to the superior prediction accuracy.
The average RMSEs of NMPC are 0.020 krpm (17.46%) and
0.328 K (11.69%) lower than MMPC, respectively. The
average overshoots of N and TOT are also 0.208 krpm
(36.73%) and 8.868 K (31.64%) smaller, respectively. So are
the improvements in output power and bypass valve opening’s
changing rates.

As a significant indicator in real-time control, the computing
times of the optimization steps in NMPC and MMPC are also
monitored. The average computing time in NMPC optimiza-
tion is 1.90 s, which is 50 times longer than that of MMPC
(0.04 s) and 19 times longer than the sampling time (0.1 s).
Although the prediction horizon and control horizon are

Figure 8. Transient response of design point operation under actual DNI (#a: the DNI drop at 2.7 h; #b: the DNI drop at 2.9 h; #c: the end of
simulation; blue dotted line: PID; red dash line: MPC; green solid line: MMPC; and black dash line: output setpoints).
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already short enough, the computational speed of first-
principle-model-based NMPC is still unable to satisfy the
demand in real-time control.

In summary, the resultant response data indicate a generally
more stable and smoother control performance of MMPC,
compared with both PID and MPC. The control performance
can be further enhanced by using NMPC. However, the slow
computational speed hinders its implementation in real-time
control.

4.2.2. Design Point Operation under Actual DNI
Variation. The comparative discussion is further conducted
in the design point operation under actual DNI variation. The
DNI curve applied in this section is measured by the
meteorological monitoring station on May 18th, 2017 on the
solar power tower test site in Zhejiang University, Hangzhou,
China, as displayed in Figure 8. The selected DNI data include
small fluctuations and drastic changes, for example, the harsh
drop at 2.7 h from 800 to 500 W/m2 (#a in Figure 8) and the
smaller drop from 780 to 680 W/m2 (#b in Figure 8), which
are caused by different degrees of realistic weather conditions.
The control objective is to keep the N and TOT at their design
value, that is, 120 krpm and 923 K, respectively. This allows
the turbine to steadily operate in its optimum state,
guaranteeing sufficient electricity generation and benign overall
system performance. Such a high-performance operation
requires a large amount of input energy, so the design point
operation is only practical under high-DNI conditions.

As indicated in Figure 8 and Table 3, both MPC (red) and
MMPC (green) can follow the setpoints with negligible
deviations, namely, 0.032 krpm (0.03%) and 0.006 krpm
(0.01%) in Nset tracking, respectively, and 0.430 K (0.05%) and
0.129 K (0.01%) in TOTset tracking, respectively. With PID
control (blue), however, there appears an apparent offset spike
at situation #a. The sudden rises of 0.070 krpm (0.06%) in N,
16.360 K (1.77%) in TOT and 0.757 kWe (6.03%) in PWout
would increase the risk of power grid instability, also
detrimental to the turbine operation. This is related to the
operation mode switching mechanism in PID control. When
DNI drops to below 650 W/m2, the constant N operation is
triggered in case the power input and power release in TCES
cannot sustain the design point operation (see ref 6). This
might cause unnecessary instability during short-term climate
changes. Such an issue can be better handled by MMPC where

the mode switching is decided on the basis of multiple
performance indicators and future operational states, thanks to
the prediction models and optimizers. MMPC also outper-
forms MPC at situation #a with smaller deviations from the
setpoints, thanks to the higher prediction accuracy.

The milder weather change at #b also causes some
fluctuations as well. Unlike at #a, the deviations under
MMPC control are slightly larger than PID. Because besides
the mode switching part, the effect of DNI is not considered in
PID control. Thanks to the larger thermal inertia of TCES,
short-term, mild weather changes would not affect the control
performance. However, the real-time measured DNI would
affect the optimization result in each sampling period due to
the embedded prediction model in MMPC. Nonetheless, the
influence is very limited, and the tracking precisions are still
satisfactory.

At the end of simulation (#c), the input solar energy
gradually exceeds the system’s capacity. VO reaches its lower
limit, and all of the high-temperature air flows into TCES to
store the excess thermal energy. When the TCES also reaches
its full capacity, the turbine inlet temperature would be
increased, and so would the TOT. As more energy cannot be
stored in TCES, it needs to be used to generate electricity,
which explains the gradual rise in output power. In this
scenario, another advantage of MMPC stands out. That is,
MMPC can prolong the design point operation by 25 min
(13%) than PID. The TOT deviation is therefore obviously
lower than that under PID control, reducing the risk of turbine
overheating. Despite this, the Nset tracking accuracy of PID is
still higher than MMPC’s. The separate control loops in PID
protect them from the influence of each other and hence
enable faster dynamic response of N, yet at the cost of TOT’s
performance. On the other hand, the multi-objective nature of
MMPC requires the tradeoff between N and TOT’s responses.
In spite of the small degression of eN, the overall tracking
performance is still better than PID.

In summary, for design point operation under actual DNI
condition, MMPC generally presents higher control perform-
ance in setpoint tracking, operation stabilization, and
avoidance of dangerous occasions than PID and MPC.

Table 3. Control Performance of Design Point Operation under Actual DNIa

aThe data are displayed with three significant figures. e is the deviation from setpoint. MMPC’s improvements = MPC/PID’s value − MMPC’s
value. Green: positive improvements; and red: degressions.
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5. POWER DEMAND TRACKING CONTROL

Given that the presented power system is a grid-connected
solar power plant, besides the operation stability in specific
working condition, the ability of responding to the power

demand from the load dispatch center is of utmost significance
as well. In this section, the MMPC controller is extended to
fulfill the power demand, exploiting the dispatchability
potential of the TCES-based solar air turbine system. The

Figure 9. Schematic of MMPC control for power demand tracking (blue: MMPC controller; green: plant model; and orange: setpoints. The dash
line indicates the state transition between the adjacent time steps).

Figure 10. Transient response of step-change power demand tracking (black solid line: DNI, setpoints; black dotted line: power demand; blue
dotted line: NMPC; red dash line: MPC; and green solid line: MMPC.)
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controller’s performance is then discussed under step-change
and actual power demand variations, respectively.

5.1. MMPC for Power Demand Tracking. To achieve
the power demand tracking control, the system output power
should keep up with the dispatching command, which is
equivalent to the output power “setpoint” in MMPC. Thus, an
additional penalty is considered in the objective function to
minimize the deviation of PWout from the demanded output
power, PWdm.
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Table 4. Overall Control Performance of Power Demand Trackinga

aThe data are displayed with three significant figures. RMSE is the root-mean-square error. MMPC’s improvements = MPC/NMPC’s value −
MMPC’s value. Green: positive improvements and red: degressions.

Table 5. Control Performance of Power Demand Tracking under Different DNIsa

aThe overshoot and settling time data are displayed with three and one significant figures, respectively. OS is the overshoot. Settling time refers to
the duration between step changes happen until the changing rates of N or TOT are less than 0.01 krpm/s and 10 K/s, respectively. MMPC’s
improvements = MPC/NMPC’s value − MMPC’s value. Green: positive improvements; and red: degressions.
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where u1,set refers to the demanded output power, PWdm, given
by the load dispatch center, u1 refers to the output electrical
power, PWout, and Qu1 is the penalty coefficient for power
demand tracking, Qu1 = diag[qu1(1), ..., qu1(P)]. When the
need for power demand tracking comes to the priority, the Qu1
value should be increased.

Since the reference trajectory tracking control of TOT and N
depends on the regulation of PWout, there are some tradeoffs to
be made to accomplish power demand trajectory tracking. If
both the electricity generation and consumption simulta-
neously vary in different patterns, the turbine can barely fix at a
specific working state, even with the help of TCES. Efforts
have been made to allow the output power to follow the power
demand directly and immediately, ending up with the highly
unstable and dangerous turbine operation. Therefore, in this
case, the TOT and N setpoint tracking performances are
compromised, and their prediction and control feedback
corrections are no longer needed, as illustrated in Figure 9.
Only the feedback correction of using real-time measured state
variables as the initial prediction state is conserved in power

demand tracking MMPC. Nonetheless, thanks to the
comprehensive consideration in the objective function, as
long as the penalty coefficients are reasonably tuned, TOT and
N would not deviate from their setpoints too far away, so the
turbine would still operate with high efficiency and stability.

This application highlights the advantages of MMPC control
over the PID control. Because the output power is one of the
manipulated variables, PID controllers are not able to track the
power demand while maintaining N at its setpoint. In MMPC,
the setpoint tracking and power demand fulfilling perform-
ances are comprehensively considered in the objective
function. Both control targets would be satisfied if the
condition permits. Otherwise, when there is an urgent need
of load dispatch, the power demand response would be
guaranteed first with allowable violations of setpoint tracking.

5.2. Case Study. In this section, the MMPC power
demand control is verified in comparison with MPC and
NMPC under different scenarios. The step-change power
demand tracking scenario is designed to examine its ability to
handle extreme situations. The actual power demand tracking

Figure 11. Transient response of actual power demand tracking under actual DNI variation (#a: the DNI drop at 2.5 h; #b: the DNI drop at 2.75 h;
red dash line: MPC; green solid line: MMPC; and black dash line: power demand and output setpoints).
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under actual DNI variation then demonstrates the controller’s
capability of confronting disturbance and uncertainties.
Different from the regulatory control, the NMPC in power
demand tracking shares the same penalty coefficients with
MMPC.

5.2.1. Step-Change Power Demand Tracking. The system
inputs and the resultant transient responses of MPC, NMPC,
and MMPC are displayed in Figure 10. The simulation starts at
PWdm = 13 kWe followed by three PWdm step changes, namely,
two 20% drops and one 40% rise, and two DNI step changes,
namely, one 300 W/m2 (43%) drop and one 600 W/m2

(250%) rise. Each step change lasts for 10 s. TOTset and Nset
stay at their setpoints during the whole simulation.

Since the power demand tracking is the priority in this case
and the output power itself is the manipulated variable, the
output power can track the demand curve rapidly and
precisely. In all the MPC (red), NMPC (blue), and MMPC
(green) cases, the output electrical power reaches the power
demand with less than 0.1% deviation in less than 0.5 s, and
the fluctuations in the other performance parameters are
mostly eliminated within 2 s after the step changes.

The response patterns in MPC and MMPC are of high
similarity, while NMPC presents obvious oscillations during
state transitions. Another observable difference lies in the
tracking precisions of N. N is the closest to its setpoint under
NMPC control, and MMPC comes second. This indicates that
NMPC and MMPC can lower the risk of overspeed without
significantly sacrificing other system performances.

The quantitative control performances of the three control
targets are concluded in Tables 4 and 5. The RMSE values of
MMPC are generally lower than MPC’s and yet, larger than
NMPC’s. Compared with MPC, there are a 0.298 krpm
(30.97%) and a 2.698 K (3.06%) improvements in the RMSE
of N and TOT, respectively. When compared with NMPC,
there are a 0.583 krpm and a 4.636 K degressions in the RMSE
of N and TOT, respectively. Since the parameters settings are
basically the same in each controller except for the prediction
models, the advanced performance should be credited to the
higher prediction accuracy in NMPC and MMPC.

To quantify the oscillation phenomenon in NMPC, the
overshoots and settling times under different DNIs are
summarized in Table 5. The MMPC presents the best
steadiness in general. In some cases, NMPC’s performance is
even inferior to MPC. The average overshoots of N and TOT
in MMPC are 0.117 krpm (69.43%) and 30.504 K (71.50%)

smaller than NMPC, respectively. MMPC’s settling times are
also the shortest, that is, 2.3 and 1.1 s in N and TOT,
respectively, which are 3.5 s (60.12%) and 2.7 s (71.05%)
shorter than NMPC, respectively.

Furthermore, in terms of the computational speed, the
average computing time of optimization in NMPC is 2.34 s.
This is even longer than regulatory control due to the more
complicated objective function. In contrast, the average
computing time in MMPC is only 0.06 s, proving stronger
practicability in real-time control.

Overall, the setpoint tracking and operation risk prevention
of MMPC are generally better than MPC in step-change power
demand tracking under step-change DNI conditions. More-
over, when compared with NMPC, MMPC shows slightly
poorer setpoint tracking accuracies but more steady and faster
state transitions.

5.2.2. Actual Power Demand Tracking under Actual DNI
Variation. The power demand tracking performance is further
studied under actual power demand curve and actual DNI
variation. As shown in Figure 11, the DNI variation is the same
data as shown in Section 4.2.2. The corresponding power
demand curve is originated from the typical power demand
curve on weekdays (the DNI data is collected on Thursday) in
Hangzhou, China and carefully scaled to match the 10 kWe
plant in this study.

The results in Figure 11 and Table 6 show similar statistical
regularity to those in Section 5.2.1. During the whole
simulation, the output power deviations from the demanded
value are no more than 0.003 kWe (0.02%). The MMPC
controller (green) can precisely track the power demand with
0.001 kWe RMSE, which is 50% lower than MPC’s (red).
Although the N in MMPC slightly deviates more than MPC by
0.209 krpm (29.49%), the TOT deviation is 5.902 K (26.10%)
smaller than that in MPC. The same trend can be intuitively
observed in Figure 11. Despite the same control parameters
settings, MMPC and MPC end up with different tradeoff
decisions. This can be settled by adjusting the penalty
coefficients in eq 14.

During the DNI decrease at #a, the N and TOT fluctuations
caused by MMPC are 0.185 krpm (56.92%) and 1.574 K
(41.77%) lower than MPC, respectively. The same trend goes
for the fluctuations at #b with a 0.071 krpm (56.80%) and a
1.361 K (53.73%) reduction, respectively. The stronger ability
of resisting disturbances in MMPC can be explained by its
better predictive performance.

Table 6. Control Performance of Power Demand Trackinga

aThe data are displayed with three significant figures. RMSE is the root-mean-square error. MMPC’s improvements = MPC’s value − MMPC’s
value. Green: positive improvements and red: degressions.
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In summary, MMPC and MPC present various advantages
in target tracking, while MMPC outperforms MPC in system
stabilization in actual power demand tracking under actual
DNI variation.

6. DISCUSSION
6.1. Closed-Loop Stability Evaluation. Due to the high

complexity of the system dynamics and numerical modeling

technique, it is difficult to perform theoretical evaluations on
the controller’s closed-loop stability. Experiments need to be
carried out to determine the practical stability region and to
ensure the controller is working within. Besides, algorithms
such as boundary control68,69,72,73 could be incorporated to
further improve the stability of such a control scheme.

In principle, the risk of dangerous operation mainly lies in
turbomachinery components due to their fastest and most
sensitive dynamics. As demonstrated in Figure 2, the operation
states should avoid the dangerous surging and choking
conditions, which are beyond the areas where the solid lines
cover. Moreover, during actual operation, the working states
are expected to be close to the colored points, as shown in
Figure 2. In other words, according to turbomachinery theory,
the area that the solid lines cover, especially where close to the
dash lines, can be regarded as the stable operation zones. So

far, all the operation states obtained in the current work are
within the stable operation zones.

Additionally, to further quantify the closed-loop stability,
extra tests have been conducted to explore the boundaries of
the stable zone of some critical parameters. The power demand
tracking MMPC is taken as an example. The main disturbances
come from the power demand and DNI. Important state
variables include the core temperature of the recuperator,
TM,rcp, the core temperature of the receiver, TM,rcv, and the
average solid temperature in TCES, Ts,ave. From an engineering
perspective, these temperature states impose relatively larger
influence on system dynamics as they are normally of very high
values and represent the energy level of the whole system.
Thus, the boundary tests are conducted with different values of
TM,rcp, TM,rcv, and Ts,ave under different DNIs.

To perform the test, simulation starts at a certain steady
state and transits to another one under the action of the
MMPC controller. When the system fails to turn into stable
operation and last for least 1 min, this condition is considered
unstable. Situations occur when system turns stable but then
the valve opening slowly approaches its physical limits due to
the large inertia of TCES. Once its physical limits are reached,
the valve opening is no longer able to control the system,
which would eventually drive the system into instability. Thus,
a 1 min threshold time duration is proposed, which should be
adequate for the operators to notice the situation and adjust
the control instructions in time. Additionally, to present the
results in an organized manner, the control variable method is

Figure 12. Stable zone of varied recuperator core temperatures.

Figure 13. Stable zone of varied receiver core temperatures.

Figure 14. Stable zone of varied average temperature of storage
medium.

Table 7. Parameters of the Measurement Noise and the
First-Order Filtera

measured
parameter

measuring
precision (%)

noise
amplitude

noise
power

filter’s time
constant (s)

TOT ±0.5 <6 K 0.3 3
N ±0.1 <0.1 krpm 0.0001 1
P2 ±0.5 <1 kPa 0.01 1
TM,rcp ±0.5 <4 K 0.1 1
TM,rcv ±0.5 <6 K 0.3 1
Tg,ave ±0.5 <6 K 0.3 1
Ts,ave ±0.5 <6 K 0.3 1

aThe measuring precisions are derived from the sensors’ manufactur-
ing information.
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employed. When one of the TM,rcp, TM,rcv, and Ts,ave is varied,
the other two variables stay constant.

The resultant stable zones are displayed in Figures 12−14.
In general, as DNI gets higher, the stable zone gets wider,
which mainly reflects in the upper boundary of power demand.
The larger amount of energy input enables the system to
generate more electricity power.

The increasing trend of the lower boundary of Ts,ave’s stable
zone (Figure 14) can also be explained by energy conservation.
The DNI and storage medium’s temperature decide the outlet
temperatures of receiver and TCES unit, respectively. The
window between receiver’s and TCES’s outlet temperatures
decides the flexibility of TIT and, therefore, the turbine’s ability
of power generation. When the Ts,ave is of high value, it is not
possible to lower down TIT and hence the output power.
Eventually, the stable operation zone in high Ts,ave narrows
down.

As shown in Figures 12 and 13, the lower boundaries are
almost the same with different DNIs and core temperatures of
the recuperator and receiver. Experience showed that the
upper and lower limits of power demand correspond to the
upper and lower limits of TCES bypass valve opening,

respectively. In the case of the upper limit, the TCES unit is
fully bypass, and it cannot be used to adjust the TIT. In the
case of lower limit, all the air flows into TCES. The TIT and
output power would remain unchanged in a short period as it
is decided by the storage medium’s temperature, which stays
constant in Figures 12 and 13.

Overall, the examined boundaries of the stable operation
zone are mainly affected by the physical limitations of the
TCES bypass valve opening. The results showed that within
these stable zones, the proposed MMPC controller can achieve
its control objectives without causing unstable operation of
system components.

6.2. Performance Evaluation with Measurement
Noises. Measurement noise is an important factor in practical
applications. In this section, performance evaluation under
realistic measurement noises is conducted on the MMPC,
MPC, and NMPC controllers. Regarding the fact that the
responsive curves might bring difficulty to distinguish different
controllers’ performances, the performance with measurement
noises is discussed separately in this section.

The band-limited white noise module and the first-order
filter module in Simulink are used to imitate the measurement

Figure 15. Transient response of step-change power demand tracking with measurement noises.
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noises and reduce their influence on the control performance,
respectively. Table 7 lists the parameter settings of the noises
and filters. All the feedback parameters are treated with
measurement noises and filters. The noise powers are selected
according to the operation ranges of the measured parameters
and the measuring precisions of the sensors, namely,
thermocouple, pressure transducer, and rotational speed
transducer. The time constants of the first-order filters are
tuned individually.

To investigate the performance under the measurement
noises and filters, both filtered and unfiltered cases are
simulated under the power demand tracking scenario, as
shown in Figures 15 and 16.

In the unfiltered case (Figure 15), the additional noises
resulted in observable fluctuations in N and TOT. Among the
three controllers, NMPC presents the most fluctuations. At
about 71 s, TOT increased 95 K, while in MPC and MMPC
cases, TOT only varied 22 K. Plus, the overshoot values caused
by MMPC are slightly smaller than by MPC, for example, 10 K
smaller during the state transition after 70 s.

The fluctuations caused by the measurement noises can be
reduced by adopting first-order filters (Figure 16). The

addition of filters not only removed most of the fluctuations
but also caused improved responsive performance in TOT.
Although the settling time was prolonged to about 10 s, the
state transition curves were greatly smoothened with the
overshoots basically eliminated. Among the three controllers,
MMPC presented the best smoothness, while NMPC showed
the highest tracking precision.

7. CONCLUSIONS
In this paper, a multi-MPC (MMPC) scheme is designed for a
solar power system with microturbine and TCES. Conven-
tionally, the gas turbine control is undertaken by PID
controllers because of their robustness and reliability. A PID
control strategy is previously developed for the TCES-based
solar air turbine system control. However, PID control has its
limitations in the multi-variable control of the coupled system.
MPC is therefore proposed to take care of the constrained
multi-variable control in different scenarios by offering the
optimal open-loop solutions in each sampling time. A multi-
modeling method is proposed by taking advantage of the close
relationship between DNI and system states, adding to the
practical value in the CSP industry application. The prediction

Figure 16. Transient response of step-change power demand tracking with measurement noises and first-order filters.
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models are identified as linear state-space models from the
first-principle nonlinear model with more than 95% accuracies.
Feedback correction is carefully designed in three aspects,
including the corrections of (1) the prediction initial states, (2)
the predicted output errors, and (3) the setpoint tracking
deviations. After feedback corrections, the N and TOT tracking
errors are all reduced to <0.01%.

The controllers’ performances are first studied in regulatory
control where MMPC demonstrates superior performances
than PID control in multiple aspects. In step-change setpoint
tracking, MMPC presents stronger adaptability to the changes
in Nset than PID and shows generally higher tracking accuracies
and stability than MPC. Although the control performance can
be further enhanced by using NMPC, the much larger
computational burden brings down its practicability in real-
time control. Controllers’ practicability is also comparatively
investigated in design point operation under actual DNI
variation. When DNI drops from 800 to 500 W/m2, PID
exposes its inferiority by switching to constant N operation
mode and causing a 16.360 K (1.77%) deviation in TOT, while
there are no evident fluctuations in MMPC curves. MMPC
also prolongs the design point operation by 13% compared to
PID. Moreover, in the presence of sudden DNI changes, the
performance fluctuations in MMPC are generally smaller than
those in MPC.

To meet the requirements of practical applications, MMPC
is extended for power demand tracking by adjusting the
objective function to consider the deviation of output power
from the power demand. As the power tracking comes to the
priority, feedback corrections for Nset and TOTset tracking are
no longer needed. When the power demand varies in the step-
change pattern, the output power deviation can reduce to
<0.1% in less than 0.5 s. When tracking the actual power
demand, the deviations are no more than 0.02%. Besides, even
VO becomes the only remaining manipulated variable, N and
TOT still stay close to their setpoints, keeping the turbine
operating in high-efficiency conditions. MMPC also shows
stronger ability of resisting disturbances than MPC and more
steady and faster state transitions than NMPC. More
importantly, such an application scenario cannot be achieved
by PID control where the output power works as a
manipulated variable in this case.

In conclusion, the proposed MMPC control scheme can
provide satisfactory performance in setpoint tracking and
disturbance resisting applications and can effectively realize the
power-demand-tracking function of the solar power system
with microturbine and TCES. From the application
perspective, the proposed MMPC design method has a high
practical value and require low effort to implement in the CSP
industry.

■ APPENDIX

A. Mathematical Model of the Solar Power System with
Microturbine and TCES
The MATLAB/Simulink model of the studied system consists
of three different types of component models, namely, the
turbomachinery, the heat exchanger, and the power electronics
models. The first-principle model involves the use of
interpolation/table-lookup calculations (in compressor and
turbine models), iterative solutions (in the receiver model),
complex nonlinear empirical equations (in receiver and TCES
models), and finite element modeling (in the TCES model).

A.1. Turbomachinery. The turbomachinery components
include the compressor and the turbine. Their outlet
temperatures are calculated as below.
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where T is the temperature, the subscripts 01, 02, 05, and 06
refer to the compressor inlet, compressor outlet, turbine inlet,
and turbine outlet, respectively; PR and ER are the compressor
pressure ratio and turbine expansion ratio, respectively; η is the
isentropic efficiency, the subscripts c and t refer to compressor
and turbine, respectively; γ is the ratio of air-specific heat at a
constant pressure and a constant volume. Thereinto, PR, ER,
and η are obtained through linear interpolation from the
performance maps of compressor and turbine, for example, the
maps shown in Figure 2.

The outlet pressures of the compressor and turbine are
calculated according to the definition of PR and ER.

The works consumed by compressor and produced by
turbine are calculated as below

=PW m h h( )c c 02 01 (17)

=PW m h h( )t t 05 06 (18)

where PW is the mechanical work; ṁ is the mass flow rate, it is
also obtained via linear interpolation from the performance
maps; and h is the enthalpy, it is a function of the airflow
temperature.

A.2. Heat Exchangers. The heat exchanger components
include the recuperator, the receiver, and the TCES unit.

A.2.1. Recuperator. The recuperator parameters are
calculated according to the energy conservation rule using
the lumped-volume method.

=MC
T

t
Q Q

d
dp,M

M
h c (19)

= =
+i

k
jjjj

y
{
zzzzQ m C T T U A

T T
T( )

2ph h ,h h,in h,out h h
h,in h,out

M

(20)

= =
+i

k
jjjj

y
{
zzzzQ m C T T U A T

T T
( )

2pc c ,c c,out c,in c c M
c,in c,out

(21)

where M is the total mass of the heat-transfer core; the
subscript M refers to the heat-transfer core; Cp is the specific
heat, the subscripts h and c refer to the hot side and the cold
side, respectively; Q̇ is the convective heat-transfer flux, the
subscripts in and out refer to the inlet and outlet of the
recuperator; U is the convective heat-transfer coefficient; and A
is the convective heat-transfer area. The values of the
thermophysical parameters are provided by the manufacturer.

A.2.2. Receiver. The receiver parameters are calculated by
the energy conservation rule using the lumped-volume
method. The thermophysical properties involved in the
equations below are determined by the local temperature
and pressure, and they are calculated through iteration.
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d
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M
in loss use (22)

= · ·Q ADNIin mir field (23)

= + + +Q U A U A U A U A T T( )( )loss ar ar ac ac r r z z wicav amb

(24)
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where M is the lumped mass of the receiver’s core; Amir is the
total area of the heliostat mirrors in use; ηfield is the heliostat
field efficiency; the subscripts in, loss, and use refer to the
incident solar irradiance, the thermal loss, and the energy
which is absorbed by the airflow, respectively; the subscripts ar,
ac, r, and z refer to the radiative loss through aperture, the
convective loss through aperture, the thermal loss through the
radial direction, and the thermal loss through the receiver’s
bottom, respectively; TM, Twicav, and Tamb refer to the lumped
mass’s temperature, the internal wall temperature of cavity, and
the ambient air’s temperature, respectively; and hconv and Aconv
are the convective heat-transfer coefficient and area,
respectively.

Thereinto, Uar is calculated as below

=U
Nu k

Dar
ar air

icav (26)

= + +Nu Gr A

R

0.000154 (2 cos ) (1 )ar
0.627 1.054

p
0.313

1.638 (27)
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1p
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where Nu is the Nusselt number; k is the thermal conductivity;
Dicav and Licav are the inner diameter and the length of the
cavity; Gr is the Grashof number; ϕ is the decline angle of the
receiver; ε and εp are the emissivity and effective emissivity of
the cavity; AR is the ratio of the aperture diameter over the
cavity inner diameter; g is the gravitational acceleration; β is
the reciprocal of the ambient temperature; and υair is the
kinematic viscosity of the air.
Uac is calculated as below

=U
Nu k

Dac
ac air

icav (30)

=
i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzzNu Gr

T
T

D
L

0.088 (cos )
s

ac
1/3 wicav

amb

0.18
2.47 icav

icav (31)

=
i
k
jjjjj

y
{
zzzzzs

D
L

1.12 0.98 icav

icav (32)

UrAr is calculated as below:

=
+ + + +

U A
R R R R R

1
r r

itube gap etube isolr extr (33)

=R
D D

k L
ln( / )

2itube
eitube iitube

itube tube (34)

=R
D D

k L
ln( / )

2gap
ietube eitube

air tube (35)

=R
D D

k L
ln( / )

2etube
eetube ietube

etube tube (36)

=R
D D

k L
ln( / )

2isolr
eisol eetube

isol icav (37)

=R
D L h

1
extr

eisol ecav extr (38)

where R is the thermal resistance; the subscripts itube, air,
etube, and isol refer to the inner absorption tubes, the air
between inner and outer tubes, the outer absorption tubes, and
the insulation layer, respectively; the subscripts iitube, eitube,
ietube, eetube, and eisol refer to the inner diameter of the
inner tubes, the outer diameter of the inner tubes, the inner
diameter of the outer tubes, the outer diameter of the outer
tubes, and the outer diameter of the insulation layer,
respectively; the subscripts tube, icav, and ecav refer to the
lengths of the tubes, inner wall of insulation layer, and the
outer wall of the receiver; and hextr is the natural convective
heat-transfer coefficient between the receiver’s outer wall and
the ambient air. It is calculated as below

=h
Nu k

Dextr
r air

eisol (39)

= +
[ + ]

l
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|
}oo
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Nu Ra
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9/16 8/27
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(40)

=Ra
g T T D
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( )eisolr amb eisol

3

air
2 air

(41)

where Ra is the Rayleigh number, Pr is the Prandtl number,
and the subscript eisol refers to the outer diameter of the
insulation layer.
UzAz is calculated as below

=
+

U A
R R

1
z z

isolb extb (42)

=R
e

k Aisolb
isolb

isol isolb (43)

=R
h A

1
extb

extb isolb (44)

where e is the thickness. Thereinto, hextb is calculated as below

=h
Nu k
Dextb

z air

isolb (45)

= · ·Nu Gr Pr0.56( cos )z
1/4 (46)

=Gr
D g T T( )isolb

3
wisolb amb

air
2 (47)

The hconv in eq 25 is calculated as below
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=f Re(1.82 lg 1.64) 2 (49)

where f is the Darcy resistance coefficient of the inner tube
turbulent flow; Re is the Reynolds number; d and l are the
inner diameter and the length of the absorption tube,
respectively; and ct is calculated by the airflow temperature
and tube wall temperature.

The frictional and local pressure losses are calculated as
below

=h
l
d

V
g

h
2f

2

(50)

=h
V

g2j

2

(51)

=
Re

0.3164
1/4 (52)

where hf and hj refer to the frictional loss and the local loss,
respectively; λ and ζ are the frictional and local loss coefficient,
respectively; and V is the airflow velocity.

A.2.3. Thermochemical Energy Storage. The TCES model
is built using the finite element method, so that the large
thermal inertia and volumetric effect caused by its relatively
large volume could be reflected in thermodynamic behavior.

The TCES’s reactor core is divided into M elements along
the flow direction. The energy conservation in the solid field
can be expressed as below:

For the first element

= +M C
T

t
Q S Q Q

d

di p i
i

i i i i,M,
s,

conv, h, loss, cond, (53)

For the second to the (M − 1)th elements

= + +M C
T

t
Q S Q Q

Q

d

di p i
i

i i i i

i

,M,
s,

conv, h, loss, cond, 1

cond, (54)

For the Mth element

= + +M C
T

Q S Q Q
d

dti p i
i

i i i i,M,
s,

conv, h, loss, cond, 1 (55)

In the fluid field, the energy conservation can be written as
below:

For the first to the Mth elements

= + + +A L C
T

t
m C T m C T Q

d

di i i i
i

i p i i i p i i iair, v,
m,

, g, 1 , 1 g, 1 conv,

(56)

where

=Q h A T T( )i i i i iconv, conv, conv, m, s, (57)

= +Q k A
T T

xdi i i
i i

cond, s, 1
s, s, 1

(58)

= · ·S H R Ci i ih, r t, t, (59)

When reduction reaction happens

=R k k(1 )i i i i it, red, oxi, (60)

When oxidation reaction happens

=R k k(1 )i i i i it, oxi, red, (61)

where i is the number of the element; the subscript s, g, and m
refer to the solid field, the fluid field, and the average airflow;
Aconv and Aair are the convective heat-transfer area and the
cross-section area of the fluid field, respectively; k in eq 58 is
the thermal conductivity; Ṡh is the chemical reaction heat; ΔHr
is the standard molar reaction enthalpy; Rt is the reaction rate;
Ct is the amount of substance of reactant; ρ is the airflow
density; L is the length of the total storage medium’s bulk; Cv is
the specific heat of constant volume; k in eqs 60 and 61 is
reaction rate constant, the subscript red and oxi refer to
reduction and oxidation reactions, respectively; and αi is the
conversion rate.

The convective heat-transfer coefficient hconv is calculated by

= + · ·
+ [ · · ]

Nu
d L Re Pr
d L Re Pr

3.66
0.0668( / )

1 0.04 ( / )
h

h
2/3 (62)

The pressure loss in TCES is calculated as below

=P
fL

d
u

4 1
2h

m
2

(63)

where ΔP is the pressure loss; f is the Fanning coefficient; L is
the tube length; dh is the hydraulic diameter; and um is the flow
velocity.

A.3. Power Electronics. The power electronics components
include the rotational shaft, a HSA, a rectifier, and an inverter.

The model is built according to the torque equilibrium as
below

=J
t

PW
d
d

1
net (64)

=PW PW PW /net gt load HSA REC INV (65)

=PW PW PW /gt t c m (66)

where J is the rotational mechanical inertia; ω is the angular
velocity of the shaft; the subscripts net, gt, load, t, and c refer to
the net power, the power outputted by gas turbine, the load
power, the power produced by the turbine, and the power
consumed by the compressor, respectively; and η is the
efficiency, the subscripts HSA, REC, INV, and m refer to the
HSA, the rectifier, the inverter, and the mechanical efficiency,
respectively.

A.4. System Integration. The integration of each submodel
is conducted via an interconnecting plena approach, as shown
below

=P R T

V
m m

d
dt

( )
g

in out (67)

where T, P, and V are the temperature, pressure, and volume of
the component, respectively; and Rg is the gas constant.
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■ NOMENCLATURE

Abbreviations
CSIRO Commonwealth Scientific and Industrial Re-

search Organization
CSP concentrated solar power
GPC generalize predictive control
HSA high-speed alternator
MGT micro gas turbine
MHI Mitsubishi Heavy Industries
MIMO multiple-input−multiple-output
MMPC multimodel predictive control
MPC model predictive control
NMPC nonlinear model predictive control
OMSoP optimized microturbine solar power system

project
PID proportional−integration−differentiation
RNN recurrent neural network
SOLGATE solar hybrid gas turbine electric power system
SolGATS concentrated solar power micro gas turbine with

TES
SOLHYCO solar-hybrid power and cogeneration plants
SOLUGAS solar up-scale gas turbine system
SQP sequential quadratic programming
TCES thermochemical energy storage
TES thermal energy storage
Greek Symbols
α conversion rate
β reciprocal of ambient temperature
γ specific heat ratio
ε emissivity
ζ local loss coefficient
η efficiency
λ frictional loss coefficient
π circular constant
ρ density
υ kinematic viscosity
ϕ decline angle of receiver
ω rotational speed
Roman Symbols
ΔHr standard molar reaction enthalpy
Δu input’s increment
A coefficient matrix

A area
AR ratio of aperture diameter over cavity inner diameter
B coefficient matrix
C coefficient matrix
Cp specific heat of constant pressure
Ct amount of substance of reactant
Cv specific heat of constant volume
d disturbance
D diameter
DNI direct normal irradiance
e thickness
E mathematical expectations
e error, deviation
ER expansion ratio
f Darcy resistance coefficient, Fanning coefficient
g gravitational acceleration
Gr Grashof number
h enthalpy, pressure loss
h correction coefficient
i number of the element
J rotational mechanical inertia
k moment of time, thermal conductivity
L length
M control horizon, total mass, total number of elements
ṁ mass flow rate
N turbine rotational speed
Nu Nusselt number
OS overshoot
P prediction horizon, pressure
Pr Prandtl number
PR pressure ratio
PW power, work
Q penalty coefficient matrix
Q̇ energy flux
q penalty coefficient
R thermal resistance
R penalty coefficient matrix
r penalty coefficient
Ra Rayleigh number
Re Reynolds number
Rg gas constant
RMSE root-mean-square error
Rt reaction rate
Ṡh chemical reaction heat
T temperature
t time
TOT turbine outlet temperature
u input
U heat-transfer coefficient
um flow velocity
V velocity, volume
VO valve opening
w weight
x division direction of finite element method
x state
y output
y ̂ predicted model output
Subscripts
01 compressor inlet
02 compressor outlet
05 turbine inlet
06 turbine outlet
ac convective loss through aperture
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air air
amb ambient
ar radiative loss through aperture
ave average
c control, compressor, cold side
conv convective heat transfer
cor corrected
d about the model disturbance
dm demand
ecav outer wall of the receiver
eetube outer diameter of the outer tubes
eisol outer diameter of the insulation layer
eitube outer diameter of the inner tubes
etube outer tubes
extr radial external heat transfer
f frictional loss
field heliostat field
g fluid field
gt gas turbine
h hot side, hydraulic diameter
HSA high-speed alternator
i number of the element
icav inner side of cavity
ietube inner diameter of the outer tubes
iitube inner diameter of the inner tubes
in inlet, incident
INV inverter
isol insulation layer
isolb insulation layer at the bottom
itube inner tubes
j local loss
load power load
loss thermal loss
M lumped bulk
max maximum
min minimum
mir heliostat mirror
out output
oxi oxidation reaction
p prediction
r radial
rcp recuperator
rcv receiver
REC rectifier
red reduction reaction
s solid field
set setpoint
t turbine
tube absorption tubes
u about the model input
use the heat absorbed by airflow
wicav inner wall of cavity
z bottom
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