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A B S T R A C T   

The side reaction of the flow battery will consume electrons, reduce efficiency, and eventually cause safety 
problems. Regarding gas management and removal, carefully controlling local over-polarization is a vital issue. 
However, among the multi-scale models that can predict local polarization, the lack of dimensionality inside the 
electrode makes it impractical to predict three-dimensional variations. In this work, we propose a three- 
dimensional multi-scale model that allows the rapid prediction of local polarization, which cooperates with 
deep neural networks, the pore network model, and the three-dimensional continuum model to have both the 
advantages of accuracy and extensibility. Parameters such as the porosity, permeability, and specific surface area 
of the electrode are calculated from 500 randomly generated microstructures, and the training samples for the 
deep neural network are calculated by the cell-scale model and pore-scale model. Through the developed model, 
we explore the effects of the interdigitated flow field, variable flow rate optimization strategies, and diverse 
operating conditions on local polarization. The results show that the proposed model can accurately predict local 
polarization. The research directions of future work include the collaborative optimization of the electrode’s 
microstructure, the flow field, and the flow rate to ultimately improve the local polarization uniformity.   

1. Introduction 

As the scale of solar energy and wind energy increase dramatically 
worldwide, the size of energy storage systems is also growing to resolve 
the contradiction between the discontinuity caused by natural condi
tions and the continuity of users’ demand. Among the energy storage 
systems, the redox flow battery (RFB) has the advantage of flexible 
power and energy capacity configurations as well as the fact that its 
reactants can be made of molecules from a wide range of sources, 
including metals and organics [1–3]. These advantages ensure that the 
RFB is cost-effective and becomes one of the critical technologies for 
large-scale energy storage. Over the last decade, the improvement and 
development of various components in the battery, including electrodes 
[4,5], membranes [6–9], bipolar plates [10,11], and electrolytes [12], 
have been concerned with promoting the battery’s performance [13]. 
The operating conditions [14,15] of the flow battery, including elec
trolyte flow rate and current density, have also been optimized. 

In the field of RFBs, vanadium [16–18], zinc-nickel [19], and iron- 
chromium [20] flow batteries are all aqueous batteries, facing the risk 
of side reactions including hydrogen and oxygen evolution. The 

formation of bubbles from side reactions reduces the electrochemically 
active area of the porous electrode, leading to a decrease in energy ef
ficiency. Prolonged hydrogen and oxygen evolution can also lead to the 
corrosion of the electrodes, thereby shortening the lifetime of the flow 
battery. Recognizing that the gas side reactions will be exacerbated by 
high voltage, cut-off voltages are usually set during the charging and 
discharging processes [21]. Nevertheless, even with preset cut-off volt
ages, gas side reactions still occur locally due to the heterogeneity of the 
carbon fibers in the electrode. Owing to the non-uniformity of the 
microscopic pores of the electrode [22], the electrolyte’s velocity and 
concentration are unevenly distributed at the pore scale, resulting in the 
lack of reactants and local over-polarization in specific pores. Efforts 
have been paid to the in-situ imaging for the hydrogen [23] and oxygen 
evolution reactions [24]; they observed that the hydrogen gas preferred 
to forming bubbles on the electrode’s surface and covering the active 
sites, while the oxygen evolution corroded the electrode surface. 
Another method to detect the local polarization of the battery is to 
establish an electrochemical model. Since the formation of bubbles in 
the porous electrode occurs at the mesoscopic scale, a pore-scale model 
[25] is required to describe the mass transfer and polarization of the 
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local reactants. Qiu et al. [26,27] reported a 3D pore-scale model in 
which the electrode structures were reconstructed by using X-ray 
computed tomography (XCT), and the flow of the electrolytes is solved 
by using the lattice Boltzmann method (LBM). This model examines the 
local vanadium concentration, overpotential, current density, and 
overall voltage. Similar models are optimized and widely used in the 
studies related to electrode material development [28], electrode 
structure optimization [29], and the investigation of electrode 
compression ratio [30]. Moreover, the lattice Boltzmann multiphase 
flow model is applied by Chen et al. [31] to study the evolution of bubble 
cluster generation by the side reaction. They investigated the effects of 
porosity, fiber diameter, gas saturation, and solid surface wettability on 
the coverage of bubbles on the solid surface. The LBM can easily describe 
the bending boundary and two-phase flow within porous media but 
requires abounding computing resources with limiting computing re
gions. Alternatively, approximating the pore structure to a series of ideal 
spheres and cylindrical channels connecting the spheres, which is called 
the pore network model method, is an alternative way to build the 
model. Sadeghi et al. [32] and Lombardo et al. [33] found that the pore 
network model reduced the simulation time by 4 or 5 times compared 
with the LBM. Overall, the abovementioned pore-scale models facilitate 
the understanding of the mass transfer and reaction process within the 
porous electrode from a subtle perspective, taking into account the in
fluence of electrode’s microstructure. 

Although the pore-scale models can predict local polarization accu
rately, the high computational resources and time required by the pore- 
scale models make it difficult to scale up the pore-scale information 
towards the whole battery and facilitate the battery design and the 
battery management in real-world applications. From this point of view, 
how to scale up the pore-scale model to the entire electrode is the key to 
the problem. Recently, machine learning has been widely used in eco
nomic analysis [34], electrode design [35], and flow field design [36] of 
RFBs. Bao et al. [37] reported a framework that coupled a deep neural 
network with a partial differential equation solver and provided an 
understanding of the relationship between the pore-scale electrode 
structure reaction and the device-scale electrochemical reaction uni
formity. Besides, they proposed a variable flow rate optimization 
method to promote the surface reaction uniformity. 

Alternatively, a variety of operation strategies have been proposed to 
enhance the mass transfer uniformity within the whole cell. As a com
mon strategy in the battery operation, the flow rate management can 
effectively improve the energy efficiency of the battery. Most of the 
proposed strategies concerned the trade-off between the flow battery 
performance and the energy consumption: increasing the electrolyte 
flow rate enhances the mass transfer of the active ions to the electrode 
surface, thereby reducing the concentration polarization; however, the 
corresponding increment in the pump consumption magnifies the 
parasitic energy loss of the system. To optimize the flow rate, Ma et al. 
[38] proposed that stepping up the electrolyte flow rate at the final stage 
of charging could effectively improve the system efficiency, and Ling 
et al. [39] applied a pulse electrolyte flow strategy to reduce the 
pumping cost at a lab-scale flow cell. Although the optimization stra
tegies proposed based on experimental experience were convenient to 
implement and shown to effectively improve the battery system energy 
efficiency, accurate and dynamic flow rate optimization strategies called 
for the support of models. Thus, Kim et al. [40] developed a transient 
model and investigated the effects of different flow rates on the per
formance of the flow battery. Tang et al. [41] modeled the concentration 
overpotential as a function of the flow rate to attain a variable flow rate 
strategy. It showed that variable flow rates were superior to the constant 
flow rates, and a flow factor (i.e., the multiple of the theoretical flow 
rate) of 7.5 was given to obtain overall high system efficiencies for a 40- 
cell stack. König et al. [42] presented a method to derive the efficiency 
map according to the operation points and deployed an optimization 
algorithm to minimize losses in all operation points. Afterward, more 
factors have been taken into account in the battery performance 

prediction models: Fu et al. combined the economic model and the 
variable flow rate optimization strategy into one model [43]. The con
centration discrepancy of the active species in the tank and the stack was 
factored into the flow rate optimization model developed by Wang et al. 
[44]. Xiao and Tan [45] proposed a variable flow rate optimization 
strategy in which the coefficients of the model could be adjusted ac
cording to the operating parameters. Yang et al. [46] applied a two- 
dimensional multi-physical model to analyze the performance of a va
nadium redox flow battery under variable operating strategies, based on 
which they found that the variable flow rate strategy enhanced the 
overall battery performance compared to that under the constant flow 
rate strategy. 

Although a number of previous studies have developed a series of 
operation strategies with the help of the cell-scale or the pore-scale 
models to understand the local polarization, few of them connected 
the cell-scale and the pore-scale models. Compared to conventional 
electrochemical models [47], the training data through the machine 
learning method provide the multi-scale model with the information at 
the pore scale, with which the local polarization could be ultimately 
considered in the operation strategies. Furthermore, fewer of them were 
concerned with the local polarization in the operation strategies. The 
existing one-dimensional multi-scale model attempted to improve the 
uniformity of the reaction by controlling the flow rate [37], but it cannot 
reflect the variations in the other two directions, especially in the 
through-plane direction. In addition, previous studies based on the 
deterministic pore reconstruction cannot handle the stochastics of the 
pore structure subject to a certain pore size distribution, which limits the 
practical application of the model. In the present study, we propose a 
solution that allows the operation at the cell scale to adjust the local 
polarization of the battery into an acceptable range and avoid the 
occurrence of gas side reactions through the multi-scale model con
necting deep neural networks, pore network model, and three- 
dimensional continuum model. The present work improves the multi- 
scale model with the novel pore network model, randomly-generated 
electrode fibers, and extended dimensions to three dimensions, facili
tating the study of the electrochemical reaction uniformity and the 
future work on the design of electrodes and flow fields. The effects of the 
channel dimensions of the interdigitated flow field and diverse oper
ating conditions on the local polarization distribution are explored. Note 
that although the proposed framework is based on three specific models, 
other pore-scale models that are able to predict the local polarization 
and gas side reaction can also be fitted into the framework to derive 
different multi-scale models. The rest of the paper proceeds as follows: 
The framework of the multi-scale model, including the connection 
among the cell-scale model, the pore-scale model, and deep neural 
networks, is presented in Section 2. The results of the multi-scale model 
and predictions for the local polarization under varying flow rates, 
concentrations of the reactants at the inlet, voltages, and porous medium 
are presented in Section 3. And Section 4 concludes the paper. 

2. Methods 

To rapidly predict the local polarization on the surface of the elec
trode, a multi-scale model that connects the cell-scale and pore-scale 
models is developed, as shown in Fig. 1. The pore-scale model is 
developed based on the pore network method and used to predict the 
effects of various microstructures on the electrode permeability, specific 
surface area, and electrochemical reaction. In contrast, the cell-scale 
model can simulate the flow of electrolytes and the mass transfer of 
the reactants inside the whole electrode, but the continuum model ne
glects the effects of the electrode’s microstructure. The contradiction 
between the two models necessitates the development of the multi-scale 
model. The deep neural network model acts as a bridge in the frame
work, which proceeds as follows: (1) The pore network model is 
developed with diverse microstructures (i.e., pore network) being used 
as inputs to obtain a large amount of local polarization data under 
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varying initial and microstructure conditions. (2) The deep neural 
network is trained based on the local polarization data which are labeled 
by the characteristic values of the flow rate, reactant concentration, 
voltage, and microstructure. (3) The cell-scale model is then developed 
to calculate the electrolyte’s flow, concentration, and potential distri
bution under specific flow fields and operating conditions for several 
regions, the results of which are used in the deep neural network model 
to quickly predict local polarization in each region. 

In this paper, as an example, the multi-scale model is devised for the 
positive half cell of a vanadium redox flow battery. The parameters for 
this case are provided in Table 1. It should be noted that both the sim
ulations and the experiments are based on the galvanostatic charge and 
discharge. The cell-scale model for the whole cell, the pore-scale model 
for the positive half-cell, and the deep neural network for the positive 
half-cell are demonstrated in Sections 2.1, 2.2, and 2.3, respectively. 
Moreover, the models are validated by the experimental results in Sec
tion 2.4. 

2.1. Cell-scale model 

A three-dimensional, multi-physical, cell-scale model is developed in 
COMSOL Multiphysics® to calculate the electrolyte’s velocity, reactant 
concentration, and potential distribution. These distributions are used as 
boundary conditions for the pore-scale model to obtain local 

polarization further. It should be noted that interdigitated flow field is 
applied in the cell-scale and pore-scale models to ensure simulation 
synchronization. 

In this model, it is assumed that:  

(1) Temperature effects are regarded as negligible [49];  
(2) The fluids are considered incompressible [50];  
(3) The side reactions are assumed to be negligible [51];  
(4) The crossovers of vanadium ions and water are ignored [51]. 

2.1.1. Velocity distribution 
The Free and Porous Media module in COMSOL Multiphysics® de

scribes the electrolyte flow in the channel and porous electrode. In 
detail, the Navier-Stokes equation to model the fluid flow in interdigi
tated channels and the Brinkman equation for the porous electrode are 
employed [52]. These equations are shown in Eqs. (1) and (2): 

∇⋅u = 0 (1)  

ρ(u⋅∇)u = ∇⋅
[
− pI + μ

(
∇u+(∇u)T] (2)  

ρ
ε (u⋅∇)

u
ε = ∇⋅

[

− pI +
μ
ε

(

∇u+(∇u)T
]

−
2μ
3ε∇(∇⋅u) −

μ
κ

u (3)  

where ρ denotes the fluid density, u denotes the fluid velocity, p denotes 
the pressure, I denotes the identity matrix, μ denotes the dynamic vis
cosity, ε denotes the porosity, and κ denotes the permeability. 

2.1.2. Concentration distribution 
The concentration of ions in the electrolyte is handled based on mass 

conservation, which can be expressed as Eq. (3): 

∇⋅Ni = − Si (4)  

where Ni denotes the flux of the species, Si denotes the source term. The 
flux of the species can be calculated by the Nernst-Planck equation [53]: 

Ni = − Deff
i ∇ci − ziueff

i ciF∇ϕe + uci (5)  

where ci denotes the concentration of species i, F denotes the Faradaic 
constant, zi denotes the ion valence, ϕe denotes the ionic potential, 
Deff

i = ε1.5Di and ueff
i = ε1.5ui denote the effective diffusivity and effec

tive diffusivity of species i, respectively. 

2.1.3. Potential distribution 
The charge conservation can be expressed as Eq. (6): 

∇⋅ie = − ∇⋅is = j (6) 

Fig. 1. Framework of multi-scale model for local polarization prediction and flow rate optimization.  

Table 1 
Parameters and properties in the model.  

Description Symbol Value Units 

Density of electrolyte ρ 1000 [26] kg/m3 

Viscosity of electrolyte μ 1 × 10− 3 [26] Pa⋅s 
Porosity of electrode ε From neural 

network 
/ 

Permeability of electrode κ From neural 
network 

m2 

Specific surface area of electrode a From neural 
network 

m− 1 

Diffusion coefficient of V4+ DV4 3.9 × 10− 10 [48] m2/s 
Diffusion coefficient of V5+ DV5 3.9 × 10− 10 [48] m2/s 
Number of electrons z 1 / 
Standard reaction rate constant k 6.8 × 10− 7 [48] m/s 
Transfer coefficient α 0.5 / 
Standard reaction potential of positive 

reaction 
E0 1.004 [48] V 

Operating temperature T 298.15 K 
Conductivity of membrane σm 10 [10] S/m 
Conductivity of electrode σe 1000 [10] S/m 
Conductivity of current collector σc 1000 [10] S/m 
Thickness of electrode we 0.0005 m 
Cross-section area of inlet channel A 1 × 10− 6 m2 

Initial concentration of vanadium 
species 

c0 1600 mol/ 
m3  
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where j denotes the local current density, ie and is denote the ionic 
current density and electronic current density, respectively, according to 
Faraday’s law and Ohm’s law [54], which can be calculated as: 

ie
→

= F
∑

i
ziNi
→ (7)  

is
→

= − (1 − ε)1.5σs∇ϕs (8)  

where ϕs denotes the electronic potential in the solid phase and σs de
notes the electronic conductivity. The local current density is formulated 
by the Butler-Volmer equation [55] as follows: 

j =aFkcO
(1− α)cR

α
[

cs
O

cO
exp

(

− α F
RT

(
ϕs − ϕe − Eeq

)

−
cs

R

cR
exp

(

(1 − α) F
RT

(
ϕs − ϕe − Eeq

)
)] (9)  

where a denotes the specific surface area, k denotes the reaction rate 
constant, α denotes the charge transfer coefficient, the subscripts O and 
R denote oxidation and reduction, respectively, and the superscript s 
denotes the electrode surface and Eeq denotes the equilibrium potential, 
which can be expressed as: 

Eeq = E0 +
RT
F

ln
(

cO

cR

)

(10)  

where E0 denotes the standard equilibrium potential for the redox 
couple. 

In Eq. (8), the term cs
i denotes the concentration of species i at the 

electrode surface, which can be calculated from the balance of the 
electrochemical reaction rate and the reactant’s mass transfer rate as 
[11]: 

km
(
ci − cs

i

)
=FkcO

(1− α)cR
α
[

cs
O

cO
exp

(

− α F
RT

(
ϕs − ϕe − Eeq

)

−
cs

R

cR
exp

(

(1 − α) F
RT

(
ϕs − ϕe − Eeq

)
)] (11)  

where km denotes the mass transfer coefficient. 
To fundamentally satisfy the active species requirement in the elec

trode, the flow rate must reach the minimum level varying with the state 
of charge (SoC), which can be calculated as follows [44]: 

Qmin =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|I|
F × c × SoC

, discharge (a)

|I|
F × c × (1 − SoC)

, charge (b)
(12)  

where c denotes the concentration of active species, and SoC denotes the 
state of charge. However, considering the diffusion layer near the sur
face of the electrode, a multiplying factor fc is employed to decrease the 
concentration overpotential. So, the final flow rate is expressed as: 

Q = fc ×Qmin (13)  

2.1.4. Boundary conditions 
The velocity and pressure conditions at the inlet and outlet of the 

channel are given, respectively: 

uin = Q/A (14)  

pout = 0 (15)  

where A denotes the cross-section area of the inlet channel. The other 
boundaries of the channel and electrode are set with no-slip boundary 
conditions. 

The inlet concentrations of vanadium species are defined with the 
given SoC: 

cin
V2+ = c0⋅SoC (16)  

cin
V3+ = c0⋅(1 − SoC) (17)  

where c0 denotes the initial value of the vanadium concentration. And at 
the outlet of the channel, the reactant diffusive fluxes are set to zero: 

− Deff
i ∇ci = 0 (18) 

The other surfaces of the electrode and channel are set with no flux 
boundary, i.e., Ni = 0. 

The flux conditions for the potential distribution of the electrode 
along the collector interface and the electrolyte along the membrane 
interface are written as follows [56]: 

− σc∇ϕs = − I (19)  

− σm∇ϕl = I (20)  

where I denotes the applied current density. Zero charge flux conditions 
are applied for other surfaces of the collector, electrode, and membrane. 

More details of the model and relevant parameters in this paper can 
be found in our previous literature [10], and the geometric parameters 
for the specific battery configuration are provided in Supplementary 
material. It is worth mentioning that in the cell-scale model, the elec
trode area is 3.24 cm2, divided into 81 square regions to respond to the 
modeling area of 4 mm2 in the pore-scale model. 

2.2. Pore-scale model 

The pore network model, which has been demonstrated to reduce the 
simulation resources compared to the LBM, is developed in this work to 
investigate the local polarization distribution at the pore scale. The 
model is basically under the assumption that:  

(1) Intensive properties such as pressure and concentration vary 
slightly within each pore;  

(2) The electrolyte is a dilute solution;  
(3) The reaction only occurs inside the pores but not throughout the 

throats [57]. 

2.2.1. Geometric modeling 
The pore network model consists of spheroids and cylinders: on the 

one hand, spheroids represent the void space of the porous medium 
where electrochemical reactions occur; on the other hand, the cylinders 
connect two spheroids as a throat where the fluid flows through. 
Compared with the finite element method or the finite volume method, 
the pore network model enables larger porous domains. In this work, the 
modeling domain is a cube with a 4 mm2 cross-section area and 0.5 mm 
thickness, where 32, 32, and 8 grid points are set in each direction, 
respectively. Since the deformation effect [58] of the electrode can play 
an important role in battery prediction results, the pore size distribution 
of compressed SGL 25AA [59] is employed in the model to generate a 
pore network. To quickly simulate the complex and disordered structure 
of the carbon-felt-based electrode, the pore network generates randomly 
satisfying the condition that the sum of adjacent pore radius is less than 
the length of the throat. Then a reasonable pore network is generated 
and added to the dataset in the deep neural network model as shown in 
Section 2.3. More details can be found in Supplementary material. 

2.2.2. Mathematical modeling 
The governing equations involved in the pore-scale model are mostly 

the same as those in the cell-scale model, except for two equations. One 
is the equation for mass conservation: 
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−
∑ni

j=1
ρuijAij = 0 (21)  

where ni denotes the number of neighbor pores to pore i, ui denotes the 
fluid velocity from pore i to pore j, and Aij denotes the cross-section area 
of the connecting throat. To accurately describe the velocity between 
pores, the Hagen-Poiseuille equation is defined as: 

uij = βij
(
pi − pj

)
(22)  

where pi and pj denote the pressure of pore i and pore j, respectively, and 
βij = Sij/8πμlij denotes the hydraulic conductance of the throat of length 
lij. Another equation is the conservation of species: 

−
∑ni

j=1
mijAij = Ri (23)  

where Ri is the net reaction rate in pore i, and mij denotes the mass flux 
from pore i to pore j, which is expressed by the following equation [57]: 

mij = uij

⎛

⎜
⎜
⎝ci +

ci − cj

exp
(

uij lij
D

)
− 1

⎞

⎟
⎟
⎠ (24)  

where ci and cj denote the concentrations of species in pore i and pore j, 
respectively, and D denotes the hydraulic diameter of throats. The local 
reaction rate in the pore can indicate how local polarization occurs, 
Thereby, the parameter Ri is used to represent the severity of local po
larization, which is also an output variable in the deep neural network 
model. 

2.2.3. Boundary conditions 
In the pore-scale model, most of the boundary conditions are set the 

same as in the cell-scale model, except that the inlet of the electrolyte is 
moved above the electrodes, as shown in Appendix. In addition to this, 
unlike uniform current density at the cell scale, the potential distribution 
of the pore-scale model is the calculated local voltage: 

ϕs = Vlocal (25)  

2.3. Deep neural network model 

The fiber weaves within carbon felt, leading to a complicated 
structure at different locations in the same electrode. By interacting with 
the varying flow and concentration fields, the microstructure can entail 
the unexpected occurrence of local over-polarization. Considering 
various microstructures in models are necessary to thoroughly explore 
the local polarization, which brings about large computing consump
tion, this work introduces deep neural networks (DNN) to quickly pre
dict the local polarization with diverse microstructures. 

When the reaction rate decreases, it indicates that the local reactant 
is insufficient, which will cause over-polarization and may lead to gas 
side reactions. Thus, the local reaction rate is considered one of the 
output variables of the DNN model. In addition, macroscopic parame
ters, including porosity and permeability of the porous media and spe
cific surface area, are also important outputs. Regarding the inputs, 
voltage, the concentration of species, the flow rate of the electrolyte, and 
characteristics of the microstructures are determined to be input vari
ables for learning complex local polarization. Since the electrolyte flow 
path is affected by the pore size and distribution, this work sets the sum 
of the product of the pore diameter dpi and the coordinates of the grid 
[
xi, yi, zi

]
where pore i is located as the input variable [X,Y,Z] =

[
∑

i
dpixi,

∑

i
dpiyi,

∑

i
dpizi

]

to characterize diverse microstructures. 

Specifically, five hundred pore networks with the same probability 

density function (pore size distribution from SGL 25AA) were generated 
for preparing machine learning data. The input variables X, Y, and Z are 
calculated based on the generated microstructures. In addition, bound
ary conditions for the pore-scale model, including electrolyte velocity, 
concentration, and voltage, are taken into the dataset, as shown in 
Table 2. The machine learning of this work is divided into two parts: the 
first part is based on the input variables X, Y, and Z, employing 500 
different pore networks as a database to learn the macro parameters of 
porosity, permeability, and specific surface area, which will be 
substituted into the cell-scale model to obtain the multi-physical field; 
the second part is based on the calculated multi-physical field, taking ten 
types of input voltage, ten types of inlet electrolyte concentration, ten 
types of inlet flow rate as input variables, supplemented by a combi
nation of 10 randomly selected pore networks to form a database of 
10,000 data to learn local polarization under diverse operating condi
tions and microstructures. The Python package Pytorch establishes the 
DNN model in this study. In short, the employment of DNN aims to 
simplify the computation of the pore-scale model and to achieve rapid 
and accurate prediction of local polarization. 

2.4. Model validation 

Experiments have been implemented to validate the cell-scale model 
and the pore-scale model. For the flow cell, the electrode was a 5 × 5 
cm2 graphite felt (SGL®, GFA5) with the thermal treatment at a rate of 
5 ◦C/min to 400 ◦C for 12 h. The diameter of the graphite felt fibers was 
measured by scanning electron microscopy, while the porosity and the 
specific surface area were measured through the Brunauer Emmett 
Teller method. The electrolytes (1.6 M vanadium in 4 M sulfuric acid) 
were circulated by the peristaltic pumps (Masterflex®, L/S 07525-40) at 
a flow rate ranging from 10 to 20 mL/min. The galvanostatic charge and 
discharge tests were conducted at the current density corresponding to 
40 mA/cm2 with the upper and lower voltage being set as 1.8 and 0.8 V, 
respectively, by the workstation Bio-logic® VSP. The positive and 
negative tanks’ electrolyte volumes were set as 30 mL. The nitrogen was 
aerated to the negative tank to avoid the oxidation of the negative 
species, and the experiments were conducted under a constant room 
temperature corresponding to 25 ◦C. As shown in Fig. 2(a), the results 
show that when the flow rate increases from 10 mL/min to 20 mL/min, 
the cell-scale model is in good agreement with the experimental results, 
with a maximum error of 0.5 %, which may be due to the ignorance of 
the side reactions and crossover in the model. 

The polarization curve and power density curve obtained by using 
the pore-scale model are compared with the experimental results ob
tained by using the above-mentioned flow cell setups (the applied flow 
rate is 10 mL/min), and the results show that the model has an excellent 
agreement at high current densities, while the error at low current 

Table 2 
Description and values of input or output variables.  

Input or output 
variable 

Description Values 

X Distribution of pores in x- 
direction 

Calculated based on selected 
microstructure 

Y Distribution of pores in y- 
direction 

Z Distribution of pores in z- 
direction 

E Input voltage (V) 0.1, 0.2, 0.3, …, 1.0 
C Inlet concentration of 

reactant (mol/m3) 
300, 400, 500, …, 1200 

Q Inlet flow rate of electrolyte 
(mL/min) 

2, 4, 6, …, 20 

ε Electrode porosity Predicted according to specific 
pore network a Specific surface area 

κ Hydraulic permeability 
Ri Local reaction rate Predicted  
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densities is about 3.9 %. At low current densities, voltage losses mainly 
consist of activation polarization. The reason for the relatively large 
deviation in the simulation results at low current densities may be 
attributable to the pore network model that uses spheres and cylinders 
to simulate the microstructure of the porous electrode. Such approxi
mation underestimates the specific surface area of the electrode, and 
then the overall reaction area decreases. Last but not least, this model 
can complete steady-state calculations within 3 min on a computer with 
the AMD® EPYC® 7452 CPU. 

2.5. Computational superiority 

Compared with the previous multi-scale model [37], the present 
study utilizes the pore network model in place of the LBM method. As 
mentioned in the literature [33], the computational time of the pore 
network model is reduced by 4– 5 times that of the LBM method. In this 
manner, the dimension of the model can be extended to three di
mensions at relatively small computational expenses. In addition, 
through the deep neural network, the outputs from the pore-scale model 
such as permeability and specific area which are dependent on the 
electrode’s microstructure are quickly predicted, largely reducing the 
computational time required to connect the cell-scale model and the 
pore-scale model. 

3. Results and discussion 

3.1. Reaction rate distribution at pore scale 

In this study, the pore-scale model is employed to calculate the dis
tribution of the local reaction rate of reactants, denoting the local po
larization distribution as Fig. 3 shows. The area with a high ion reaction 
rate in the figure is highlighted in yellow, representing that the reactants 
here are sufficient and the polarization overpotential is relatively low. In 
contrast, the area with low ion reaction rates is marked in violet, rep
resenting that the reaction here is limited by mass transfer and the po
larization overpotential is high. To further explore the effects of different 
operating conditions on the local reaction rate, different flow rates, 
concentrations, and voltages are applied to the boundary conditions of 
the electrodes, as shown in Fig. 3. We find that even preferred conditions 
(such as Fig. 3(b), (d), (f)) cannot eliminate the low reaction rate re
gions, especially near the outlet. As shown in Fig. 3(a) and (b), when the 
flow rate into the electrode increases from 5 to 15 mL/min, the regions 
with high local reaction rate increases from about 20 % to 80 %, grad
ually propagating from the electrolyte inlet to the outlet, indicating that 
the increment of the flow rate effectively improves the local mass 
transfer of the reactants. With the increment of flow rates, the region of 
high reaction rate flipped from the side near the inlet to the other side. 

Fig. 2. (a) Validation of cell-scale model compared to experimental results with discharging under the flow rate corresponding to 10, 15, and 20 mL/min. (b) 
Polarization curve and power density curve obtained by using pore-scale model and experimental results. The applied flow rate was 10 mL/min. Sim. and Exp. are 
short for simulative and experimental results, respectively. 

Fig. 3. Reaction rate distribution of vanadium pentavalent ion in the pore-scale model under (a) 5 mL/min, (b) 15 mL/min, (c) 400 mol/m3, (d) 1100 mol/m3, (e) 
voltage = 0.4 V, (f) voltage = 0.8 V, and (g) one kind of pore network, (h) another kind of pore network. 
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According to the Butler-Volmer equation, the reaction rate is dependent 
on the overpotentials as well as the concentration of the reactants (Eq. 
(9)). When the applied flow rate is relatively low, the reaction is limited 
by the mass transfer of the reactants towards the surface of the carbon 
fibers, and thereby the region near the inlet, where the concentration of 
the reactants is relatively high, shows high reaction rates. With a sub
stantial increment in the applied flow rate (e.g., from 5 mL/min to 15 
mL/min as shown in Fig. 3), the distribution of the reaction rate is less 
constrained by the mass transfer of the reactants. Rather, the distribu
tion of the overpotential plays an important role. Since the direction of 
the current is from the boundary of the bipolar plate to the boundary of 
the membrane, the potential difference will rise in this direction. Thus, 
the overpotential near the membrane will be larger, resulting in a higher 
reaction rate on the side near the membrane. This phenomenon was also 
observed in the previous studies that the reaction rate is higher near the 
membrane than that near the bipolar plate (e.g., [57]). The average 
reaction rate of the whole electrode at the high flow rate is 2.9 times that 
at the low flow rate. 

A similar situation is also observed in the cases of variations in the 
concentration and voltage as Fig. 4(c)–(f) show. When the concentration 
at the inlet increases from 400 to 1100 mol/m3 and the voltage increases 
from 0.4 to 0.8 V, more pores with high reaction rates appear, indicating 
that the operating conditions affect the local polarization significantly. 
The average reaction rate of the whole electrode at the high concen
tration and the high voltage are 1.9 folds and 1.4 folds, respectively, 
those at the low concentration and the low voltage. In addition, mi
crostructures also cause differences in the internal mass transfer within 
the electrode, as shown in Fig. 4(g) and (h): two diverse microstructures 
entail the reaction rate distribution inside the electrode discrepant. 

The results show that in addition to the operating conditions, the 
microstructure of the electrode also causes differences in the distribution 
of local polarization. When developing the multi-scale model, the di
versity of microstructures needs to be taken into account. In order to 
factor the impacts of the velocity, concentration, voltage, and micro
structure into the multi-scale model, DNN is integrated into the frame
work relying on the large amount of data produced by the pore-scale 

model. The following subsections will display the quick prediction re
sults through the DNN model. 

3.2. Prediction of deep neural networks 

DNN is a widely employed deep learning framework based on arti
ficial neural networks with multiple hidden layers. In this study, the 
DNN fills the gap between the macroscopic parameters and local po
larization that varies with the microstructure, making it possible to 
optimize the local polarization by adjusting the macroscopic parame
ters. For the DNN prediction, the dataset includes 500 pore networks 
based on the pore diameter distribution curve of compressed carbon felt 
(see Supplementary material) and 10,000 samples with varying opera
tion conditions. The dataset is then split into three subsets, including the 
training set occupying 50 % of data to train weighting parameters, the 
validation set occupying 30 % of data to determine the layer structures 
and hyperparameters, and the test set occupying 20 % of data to eval
uate the model performance. In this study, the hidden layers for each 
layer are all set with 400 neural nodes, respectively. 

The prediction performance of DNN is shown in Fig. 4, showing good 
agreements between the predicted and the test data. However, some 
discrepancies are observed in the specific surface area and the porosity, 
which may be caused by the generation process for the pore network. 
When the pore network is generated based on the pore size distribution 
curve, due to the limitation that the diameter of adjacent pores cannot 
exceed the mesh’s length (Supplementary material), resulting in the 
random generation of pore networks that are conformed to a particular 
porosity and specific surface area. Moreover, it should be noted that the 
local reaction rate dependent on the six input variables shows a good 
fitting, and the mean-squared error of the model is 1.5 × 10− 3 after 1000 
epochs of training. 

Good fits of the parameters and local polarization show that the 
variables used in this study can appropriately describe the changes 
brought by diverse microstructures and operating conditions. Addi
tionally, the designed neural network structure is also effective. The 
accurate prediction of the DNN model is a key part of the multi-scale 

Fig. 4. Agreements between predicted permeability through deep neural networks (subscript “Pre”) and targeted permeability obtained by using pore-scale model 
(subscript “Tar”): (a) in x-direction, (b) in y-direction, and (c) in z-direction. Comparisons between predicted and targeted values: (d) specific surface area, (e) 
porosity, and (f) local reaction rate. 
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model, which enables the DNN to accept the input of the cell-scale model 
and output the local polarization instead of the pore-scale model, so as to 
predict the local polarization at the cell scale. 

3.3. Reaction rate distribution at cell scale 

We further explore the effects of diverse operating conditions on the 
distribution of the reaction rate at the cell scale. As shown in Fig. 5(a), 
when the flow coefficient fc increases from 2 to 10, the local reaction rate 
of vanadium pentavalent ion gradually grows, and the average reaction 
rate of the entire flow cell is increased by 2.4 times. From the distribu
tion map, low reaction rate areas are still observed. The distribution of 
the reaction rate under varying velocity, concentration, and voltage of 
the electrolyte is investigated, as shown in Fig. 5(b)–(d). Owing to the 
interdigitated flow field, the electrolyte flows faster under the ribs, 
represented by the red regions in Fig. 5(b). Furthermore, the relatively 
large pores in the porous electrode lead to preferred paths and flow 
“dead zones”, which have been confirmed by several previous studies 
[22,60]. Owing to the effects of the inhomogeneous distribution of the 
pores and the flow field, increasing the flow rate can improve the overall 
polarization distribution, but cannot eliminate the over-polarization on 
the electrode surface completely. 

In addition, the effects of current densities and SoCs on the local 
reaction rate of the vanadium pentavalent ion ions are investigated in 
this study. As shown in Fig. 6, the overall distribution of the local re
action rates follows similar trends, which are largely affected by the 
differences in the under-the-rib and the under-the-channel electrolyte 
velocities (see Fig. 5). The discrepancies are likely associated with the 
randomly generated pore networks in different cases. Additionally, it 
should be noted that although the flow factor (determined by the SoC, 
applied current density, and flow rate; see Eqs. (15), (16)) keeps the 
same in all the investigated cases in Fig. 6, the local reaction rate shows 
the distinct distribution in the flow cell. Existing flow strategies are 
typically adjusted according to the SoC and the applied current density, 
ignoring the inhomogeneity caused by the flow field and microstructure. 
Thus, future flow rate optimization strategies need to consider more 
factors including the synergy of operating conditions, flow field, and 
electrode microstructure to control local over-polarization. 

Nevertheless, the microstructure of the carbon-based electrode material 
should be further improved along with the novel flow fields to alleviate 
the pore-scale and cell-scale flow “dead zones”, which can hardly be 
addressed by the flow rate management. 

3.4. Future work 

This paper proposes a method that can quickly predict local polari
zation; however, further adjustment methods for alleviating the local 
over-polarization are not fully proposed. Although adjusting the flow 
rate can reduce the polarization to a certain degree, the local polariza
tion remains too low in the dead flow zones affected by the flow field and 
the microstructure of the electrode. To this end, to thoroughly avoid 
local over-polarization, the ultimate solution is the simultaneous opti
mization of the flow field and electrode’s microstructure designs as well 
as the applied flow rate through advanced machine learning and addi
tive manufacturing methods such as 3D printing, and thereby substan
tially enhancing the uniformity of the electrolyte flow in the porous 
electrode. Wan et al. [35] developed a coupled machine learning and 
genetic algorithm framework to effectively optimize the arrangements 
and diameters of carbon fibers for simultaneously optimizing the spe
cific surface area and the hydraulic permeability of the electrode, which 
is expected to be extended to include the local polarization objective for 
optimization in the future. In addition, the proposed battery manage
ment strategy can also influence the distribution of the two-phase flow 
in the porous medium composed of aqueous electrolytes and bubbles 
generated by side reactions. Thus, a two-phase flow model should be 
added to the framework in the hope that gas management and removal 
at multiple scales can be achieved. 

For real-time operation, some parameters, especially those that vary 
with the degradation process, should be in-situ, real-time measured, and 
updated in the model during the cycling process. And the potential so
lution is to utilize advanced in-situ measurement technologies and 
prepare more real-world data for training. To be specific, in real-time 
operation, the proposed model requires real-time measurements for 
the parameters including flow rate, inlet reactant concentration or state 
of charge, and voltage of the battery system, and then calculates the 
local polarization based on these parameters. Additional parameters 

Fig. 5. (a) Predicted local reaction rate distribution through multi-scale model under varying electrolyte flow rates, and distributions of (b) velocity, (c) concen
tration of vanadium pentavalent ion, and (d) voltage simulated by cell-scale model. Results are at the central section of the electrode and under 300 mA/cm2 current 
density and SoC corresponding to 0.25. The flow coefficient fc varies at 2, 6, and 10. 
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required for the model, including the physical properties of the electrode 
and the electrolyte, and the standard values of the electrochemical re
action kinetics, do not change during operation. Nevertheless, consid
ering degradation, the abovementioned properties of the electrode and 
the electrolyte may also change. For example, the concentration of the 
reactants may be influenced by crossover and gas side reactions, 
bringing variations in the properties of the electrolyte such as conduc
tivity and viscosity. To this end, in real-world systems, more electrode 
pore structures and operating parameters may skew the predictions of 
deep neural networks and should be considered during the training 
process in the future. 

4. Conclusions 

The present paper proposes a multi-scale model that can quickly 
predict the local polarization of the RFBs, which combines the pore-scale 
model, the deep neural network, and the cell-scale model. Some main 
findings and contributions of the present study are as follows: 

(1) A multi-scale model incorporating both electrode’s microstruc
ture and the flow field was constructed, based on which the 
operating strategy for alleviating local over-polarization and the 
future’s simultaneous optimization for the flow field and micro
structure could be implemented. The microstructures were 
randomly generated in different areas of the electrode and subject 
to a given pore size distribution, to represent the stochastics and 
the pore structure characteristic of the electrode.  

(2) By using the developed multi-scale model, the impacts of the 
interdigitated flow field with various operating conditions and 
electrode microstructures on the local reaction rate distribution 
were extensively explored. With the interdigitated flow field, the 
local polarization inside the electrode will be affected by the 
electrolyte velocity, concentration, and electric potential field. 
When the flow velocity, inlet concentration, and boundary 
voltage increase, the reaction rate of the active species will be 
also improved.  

(3) The research directions of future work include the collaborative 
optimization of the electrode’s microstructure, the flow field, and 
the flow rate to ultimately improve the local polarization uni
formity. Moreover, the gas side reaction and the bubble man
agement should also be factored into the model to further 
improve the battery efficiency and lifetime. And the practicability 
of the model should be further improved by taking into account 
degradation effects on the parameters. 
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