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A B S T R A C T   

The collision rate between primary nanoparticles in the turbulent flow is of significance for 
accurately predicting the growth rate of agglomerates during the flame synthesis process. In this 
work, the clustering and the collision of Brownian particles in the free-molecular regime in ho
mogeneous isotropic turbulence are investigated using the direct numerical simulation and the 
Langevin dynamics. It is found that the Brownian motion can distribute the particles more uni
formly, leading to the formation of a plateau on the curve of the radial distribution function 
(RDF). This anti-clustering effect is significant only at a small separation distance of particle pairs 
and cannot be observed when the separation is larger than a critical value. The radial relative 
velocity (RRV) is significantly enhanced, especially at the small separation distance, when the 
Brownian motion is taken into account. A velocity superposition analysis shows that the statistics 
of RRV of Brownian particles can be obtained by adding a random variable onto the RRV of non- 
Brownian particles with the same Stokes number. The increased radial relative velocity coun
teracts the anti-clustering effect of the Brownian motion and leads to the increase of the geometric 
collision kernel. Finally, the collision kernel of Brownian particles is formulated as a function of 
asymptotic values of RDF and RRV at a vanishing separation. The proposed collision kernel en
ables us to estimate the collision rate between nanoparticles that are much smaller than the 
Kolmogorov length scale.   

1. Introduction 

Collision and agglomeration of nanoparticles in turbulence are ubiquitous in many natural and industrial processes, including the 
flocculation during water treatment (Renault et al., 2009; Verma et al., 2012), atmospheric processes (Ziemann & Atkinson, 2012), the 
aerosol formation (Morán et al., 2021; Wang & Chung, 2019), the material synthesis in flames (Bringley et al., 2022; Li et al., 2016; Rai 
et al., 2018), and the particulate matter capture (Chen et al., 2016; Jaworek et al., 2018; Li & Marshall, 2007). In real industry ap
plications, tracking the dynamics of every individual particle is far beyond the computational capability. Therefore, the population 
balance equation (PBE), which statistically describes the evolution of the size distribution of agglomerates at the macroscopic con
tinuum level, is one of the few theoretical tools that can be applied to large-scale systems (Boje & Kraft, 2022; Chen et al., 2021; Hou 
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et al., 2020; Huang et al., 2017; Ramkrishna & Singh, 2014; Sharma et al., 2019; Wang et al., 2019; Zhang et al., 2020). The most 
important component in PBE is the collision kernel that characterizes how fast agglomerates of size i collide with agglomerates of size j. 
For nanoparticles immersed in a turbulent flow, both the random Brownian motion and the coherent vortex structures affect the 
clustering and collision between particles (Polovnikov et al., 2016; Cifuentes et al., 2020; Hitimana et al., 2021). However, a collision 
kernel that can simultaneously reflect the influences of the turbulent transport and the random Brownian motion is still lacking. The 
current work, therefore, focuses on the collision rate of nanoparticles in the free-molecular regime in turbulence. 

There have been extensive investigations on the collision kernel of non-Brownian inertial particles in turbulence. The collision 
kernel is usually expressed as a function of the mean radial inward velocity and the radial distribution function (RDF) of particle pairs 
at the distance of the contact. Particles with negligible inertia are uniformly distributed in the flow field and the mean radial inward 
velocity can be determined from the velocity gradient of turbulence flows (Saffman & Turner, 1956). The influence of particle inertia 
on the collision kernel is then discussed, identifying the effect of the preferential concentration (Balachandar & Eaton, 2010; Lian et al., 
2019; Saw et al., 2008; Squires & Eaton, 1991; Tagawa et al., 2012; Yuan et al., 2018), which results in inhomogeneous particle 
distribution (particles clustering) in turbulence, and the sling or caustic effect (Falkovich et al., 2002; Pumir & Wilkinson, 2016; 
Wilkinson et al., 2006), which makes inertial particles to collide with large velocity differences. The clustering of particles can be 
statistically characterized by RDF, which depends on both the separation distance and the particle inertia. For a given separation, RDF 
first increases and then decreases with the particle Stokes number (St). The peak of the RDF shifts to a higher St value with the 
increasing separation distance. For a fixed value of St, RDF approaches the unity at the large separation limit (Gustavsson & Mehlig, 
2016; Ray & Collins, 2011; Reade & Collins, 2000). Complicated interparticle interactions, including the elastic repulsion (Bec et al., 
2013; Voβkuhle et al., 2013), the electrostatic interactions (Lu et al., 2010; Lu & Shaw, 2015; Ruan et al., 2021), and the van der Waals 
adhesion (Kellogg et al., 2017; Dizaji & Marshall, 2016; 2018; Chen et al., 2019; Zhao et al., 2020; Mortimer, Njobuenwu, & Fair
weather, 2020; Chen & Li, 2020), have been considered in several recent studies and give rise to non-trivial collision phenomena. 

The collision rate of Brownian particles in turbulence, in contrast, is far from clear. Previous studies mainly focus on the collision 
rate caused solely by the random Brownian motion with little consideration for the turbulent effect. For Brownian particles in the 
continuum regime (i.e. with a Knudsen number Kn ≪ 1), the particle moves in a random, meandering path, and the collision can be 
described as a Brownian diffusion process that is affected by the hydrodynamic drag (Fuchs, 1964). For nanoparticles in the 
free-molecular regime (Kn ≫ 1), the collision kernel is similar to that of a gas molecule (Glassman & Yetter, 2008). The drag force on 
particles in the free-molecular regime is much less than that predicted from the Stokes law (Buckley & Loyalka, 1989), particles’ 
trajectories, therefore, can deviate from the streamlines despite the small inertia of particles. The Brownian collision kernels are then 
modified to account for the effect of non-spherical particle shapes or irregular agglomerate structures (Chen et al., 2019; Endres et al., 
2021; Gspann et al., 2017; Qian et al., 2022), the van der Waals force (Jiang et al., 2020; Qian et al., 2022), the electrostatic and 
magnetic interactions (Li & Gopalakrishnan, 2021; Tsouris & Scott, 1995; Zhang et al., 2011), and the high particle concentration 
(Heine & Pratsinis, 2007). The coagulation rate, which is highly relevant to the collision rate of aerosols, has been investigated (Chun & 
Koch, 2005; Garrick, 2011). However, to the best of our knowledge, none of the modifications on the collision kernel above has 
included the turbulent effect. The current work discusses the collision of nanoparticles in homogeneous isotropic turbulence in the 
context of flame synthesis, in which the high temperature and the low pressure make the gas mean free path length larger than the 
particle size (Janzen & Roth, 2001; Lindackers et al., 1997; Qian et al., 2022; Suh et al., 2001). Therefore, the simulation results here 
are relevant for nanoparticles in the free molecular regime. The particle volume fraction is about the order of 10− 8 in the flame 
synthesis process (Camenzind et al., 2008; Zhang et al., 2013). 

Recently, the collision of fractal agglomerates in the free-molecular regime is simulated using Langevin dynamics, in which the 
detailed translational and rotational movements of particles subject to Brownian motion are tracked. Based on the results from the 
Langevin simulation, a linear relationship between the collision radii and the radius of gyration is proposed, in which the slope and 
intercept account for the dependence on the shape anisotropy and the fractal dimension (Qian et al., 2022). The Langevin dynamics 
method, coupled with the direct numerical simulation (DNS), should be able to simulate the clustering and collision of Brownian 
particles in turbulence (Choi et al., 2015; Friedlander, 2000; Inci et al., 2017; Mofakham & Ahmadi, 2019). However, the related 
research is deficient leaving many questions to be answered. For example, the Brownian motion intuitively tends to distribute the 
particles uniformly and inhibit the clustering. However, it is not clear to what extent the anti-clustering effect due to the Brownian 
motion can counteract the preferential concentration phenomenon for particles in turbulence. Moreover, the anti-clustering effect and 
the fluctuating Brownian motion have negative and positive impacts on the collision rate, respectively. A quantitative model of the 
collision rate for Brownian particles considering these two competing effects is still lacking. 

In this study, we try to answer the questions above by simulating the motion of Brownian particles in homogenous isotropic 
turbulence. The flow field is calculated by the direct numerical simulation and the Brownian motion of nanoparticles is simulated using 
the Langevin equation. We focus on the collision of nanoparticles in the free-molecular regime, where the friction coefficient of the 
fluid resistance on particles is derived from the gas kinetic theory. The radial distribution function (RDF) and the radial relative ve
locity (RRV) are calculated for particles with different levels of inertia and Brownian motion intensity. We demonstrate that the 
Brownian motion has a significant impact on RDF and RRV when the particle separation is below a certain value. A velocity super
position analysis is then proposed to statistically predict the RRV of Brownian particles. At last, the collision kernel for Brownian 
particles is formulated as a function of the particle Stokes number, the Peclet number, and the collision radius. 
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2. Numerical methods 

2.1. Governing equations and numerical method 

The homogeneous and isotropic turbulent (HIT) flow is simulated by the open-source code HIT3d (Chumakov, 2006). The 
Navier-Stokes equations are solved using the pseudospectral method with second-order Adams-Bashforth time stepping 

∇· uf = 0, (1a)  

∂uf

∂t
+uf · ∇uf = −

1
ρf
∇p + ν∇2uf + f F. (1b)  

Here, uf is the fluid velocity vector, ρf is the fluid density, p is the pressure, and ν is the fluid kinematic viscosity. A statistically 
stationary state is achieved by imposing the deterministic forces f F to the two lowest wavenumbers in the Fourier space. The numerical 
simulation domain is a triply periodic cube with a size of 2π in dimensionless unit and is discretized with 128 cells in each direction. 
The Reynolds number based on the Taylor microscale is Reλ = 80. The maximum wavenumber κmax used in the pseudospectral method 
and the Kolmogorov length scale η satisfy κmaxη = 1.55 > 1.5, indicating that the grid spacing is small enough to resolve the motions at 
the Kolmogorov scale (Pope, 2000). 

Monodisperse nanoparticles are then randomly seeded in the HIT and are tracked through the one-way point-particle Lagrange 
method. The Brownian motion of particles is modeled by the Langevin equation, in which a random Brownian force is applied to 
particles. The governing equation for particle motion thus is given by (Friedlander, 2000; Maxey & Riley, 1983): 

dxp,i

dt
= vp,i, (2a)  

mp
dvp,i

dt
= − f

(
vp,i − uf ,i

)
+ FB,i. (2b)  

Here, xp,i, vp,i, and mp denote the position, velocity, and mass of particle i, uf ,i is the fluid velocity at the position of particle i, and FB,i 

denotes the Brownian force. The current work focuses on particles in the free-molecular regime, therefore, the friction coefficient f is 
given by (Friedlander, 2000; Epstein, 1924): 

Table 1 
Physical and dimensionless value of parameters used in the simulations.  

Parameters Physical values Dimensionless values 

Typical scales 
Typical length, L0 1× 10− 2 m 1 
Typical velocity, U0 40 m/s 1 
Typical time, T0 2.5× 10− 4 s 1 
Typical mass, M0 1.33× 10− 8 kg 1 
Fluid properties 
Fluid density, ρf 1.33× 10− 2 kg/m3 1 
Fluid kinematic viscosity, ν 3× 10− 3 m2/s 7.5× 10− 3 

Fluid temperature, T 900 K −

Fluid pressure, p 3500 Pa 1.64× 102 

Gas mean free path length, λ 5900× 10− 9 m 5.9× 10− 4 

Grid resolution, N3 1283 −

Taylor-scale Reynolds number, Reλ − 80 
Kolmogorov length scale, η 2.59× 10− 4 m 2.59× 10− 2 

Kolmogorov time scale, τη 2.23× 10− 5 s 8.92× 10− 2 

Kolmogorov velocity scale, uη 11.6 m/s 0.29 
Mean energy dissipation, ε 6.03× 106 m2/s3 0.94 
Root mean square velocity, urms 53.2 m/s 1.33 
Grid spacing, Δx 4.91× 10− 4 m 4.91× 10− 2 

Fluid time step, Δtf 2.5× 10− 8 s 1× 10− 4 

Particle properties 
Particle density, ρp 1.15× 103 − 17.25× 103kg/m3 8.65× 104 − 1.3× 106 

Particle diameter, dp 4.25× 10− 9 − 12.7× 10− 9m 4.25× 10− 7 − 1.27× 10− 6 

Particle number, Np 105 − 5× 105 −

Particle volume fraction, φ 1.62× 10− 17 − 2.16× 10− 15 −

Particle time step size, Δtp 2.5× 10− 9 s 1× 10− 5 

Kolmogorov-scale Stokes number, Stk − 0.022 − 0.112 
Kolmogorov-scale Peclet number, Pek − 3.0 − ∞  
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f =
2
3
d2

pρf

̅̅̅̅̅̅̅̅̅̅̅̅̅
2πkBT

mf

√
(

1+
πα
8

)
, (3)  

where dp is the particle diameter, mf is the mass of the gas molecules, the momentum transfer coefficient α is set as 0.9, kB = 1.38×
10− 23 J/K is the Boltzmann constant, and T is the absolute temperature (K) of the fluid. The three components of the Brownian force, 
FB, in x, y, and z directions are given as (Langevin, 1908; Li & Ahmadi, 1992): 

FB,x/y/z =G

̅̅̅̅̅̅̅̅̅̅̅̅
2kBTf
Δtp

√

, (4)  

where G is an independent Gaussian random number with zero mean value and the unit variance and Δtp is the particle simulation time 

step. The particle simulation time step Δtp is set as Δtp =

(
d2

p m2
p

6fkBTq

)1
3

, and the coefficient q = 0.263 (Suresh & Gopalakrishnan, 2021). 

2.2. Simulation conditions 

Monodisperse particles are randomly seeded into the domain after the turbulence reaching the statistical equilibrium state. The 
typical velocity is given by U0 = 40 m/s, and the typical length is set as L0 = 1× 10− 2 m. The typical time thus is T0 = L0/U0 = 2.5×
10− 4 s and the typical mass is M0 = L3

0ρf = 1.33× 10− 8 kg, with the fluid density being ρf = 1.33× 10− 2 kg/m3. The velocity, length, 
and time in Eq. (2) are then normalized by U0, L0, and T0, respectively. The temperature of the surrounding gas is assumed to be T =

900 K and the pressure is p = 3500Pa. At this temperature, the fluid kinematic viscosity is ν = 3× 10− 3 m2/s. Other relevant pa
rameters, including the particle density and the particle diameter, are summarized in Table 1 in both dimensional and dimensionless 
forms. The fluid-to-particle density ratio (χ = ρf/ρp) satisfies χ ≪ 1 and the particle volume fraction satisfies φ < 10− 10, indicating that 
the added mass effect and the turbulent modulation due to particles are negligible in this work. 

Since a small particle time step is adopted in our simulation to detect the particle collisions, a huge particle number will lead to an 
unacceptable computational cost. We use a particle volume fraction that is smaller than the value in a real flame synthesis process. The 
statistics of the radial distribution function (RDF), the radial relative velocity (RRV), and the geometric collision kernels in the current 
work should be independent of particle concentration once the sample is large enough. To verify this point, testing simulations are 
performed using different particle numbers (0.5× 105, 1× 105, and 2.5× 105) and the results of RDF, RRV, and the geometric collision 
kernel are not affected by the particle number. 

The dimensionless form of Eq. (2b) is expressed as: 

dv̂p

d̂t
= −

v̂p − ûf

St
+

1̅̅̅
̅̅̅̅̅

Δ t̂p

√
1

St
̅̅̅̅̅
Pe

√
(
G1ex,G2ey,G3ez

)
. (5)  

Here, ̂vp = vp/U0 and ̂uf = uf/U0 are the dimensionless velocities of particles and fluid, respectively, ̂t = t/T0 and Δ t̂ p = Δtp/ T0 are the 
dimensionless time and dimensionless particle time step, respectively. The macroscopic Stokes number is calculated as St = τp/ T0, 
where τp = mp/f is the response time of particles. The Kolmogorov scale Stokes number, representing the inertia of particles, is defined 
as Stk = τp/τη, where τη = η/uη is the Kolmogorov time scale, η and uη are the Kolmogorov length and velocity, respectively. The Peclet 
number Pe = U0L0 /(2D) represents the relative intensity of the advective transport and the Brownian motion with D = kBT/ f being 
the coefficient of diffusion. The Kolmogorov scale Peclet number is defined as Pek = uηη/(2D). Here, ex, ey, and ez are unit vectors in the 
x, y, and z directions, respectively, and G1, G2, and G3 are zero-mean, unit variance independent Gaussian random numbers. Here
inafter, all variables are in their dimensionless forms but the same notations are adopted for simplicity. 

The current work focuses on the effect of the random Brownian motion on the clustering of particles in HIT. Therefore, the value of 
the Kolmogorov scale Peclet number is varied within the range Pek = 3.0 − ∞, where Pek → ∞ represents no Brownian motion for 
particles. The value of the Stokes number Stk is varied within the range Stk = 0.022 − 0.112 to reflect the influence of particle inertia. 

2.3. Characterization of particle clustering and collision 

The clustering and collision of Brownian particles in the homogeneous and isotropic turbulence are characterized in terms of the 
collision kernel Γ, the radial distribution function (RDF) g(r), and the radial relative velocity (RRV) wr(r). Here, r is the separation 
distance between two particles. The radial distribution function is defined as the ratio of the number of particle pairs per unit volume 
found at a given separation to the expected number if the particles were uniformly distributed (McQuarrie, 1976). RDF can be 
computed from a field of Np particles according to 

g(r)=
N(r) /ΔV

Nt/V
, (6)  

where N(r) is the average number of particles found in an elemental shell volume ΔV = 4πr2Δr at a separation distance r from a 
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reference particle, V is the volume of the entire simulation domain, and Nt = Np(Np − 1)/2 is the total number of particle pairs in the 
system. 

The radial relative velocity between particle i and particle j with a separation distance r is calculated as 

wr(r)=
(
vp,j(x+ r) − vp,i(x)

)
· r̂, (7)  

where vp,i(x) and vp,j(x+r) are the velocities of two particles located at x and x+ r, respectively, and ̂r = r/|r| is a unit vector pointing 
along their line-of-centers. 

The collision kernel based on the direct counting of collision events is given by 

Γij =
Ṅ ij

ninj
, (8)  

where Ṅ ij is the collision rate per unit volume and ni is the average number concentration of size group i. According to the model 
proposed by Sundaram and Collins (1997), the normalized collision number Ζ over a time period τ is 

Ζ(τ)=
∫ ∫

Φ(r,w; τ)P(w|r)g(r)drdw, (9)  

where w is the relative velocity, r is the separation vector between particles, P(w|r) is the conditional probability density function (PDF) 
of the relative velocity at a given separation vector, Φ(r,w; τ) = H(r − r̃(τ∗)) is the collision operator with Heaviside function H and ̃r(τ∗)
represents the minimum separation at time τ∗. The collision kernel is then estimated from the limit Γ = lim

τ→0
Ζ(τ)

τ =
dΖ(0)

dτ . For homoge

neous and isotropic system, the collision kernel for monodisperse particles at separation distance r can be estimated from g(r) and wr(r)
as 

Γ(r)= 4πr2g(r)
∫0

− ∞

− wr(r)P(wr|r)dwr, (10)  

where g(r) denotes the value of the radial distribution function (RDF) at separation distance r, wr denotes the radial relative velocity, 
and P(wr|r) is the conditional probability density function (PDF) of the radial relative velocity at a given separation distance. The 
collision kernel is usually normalized by the collision kernel of the zero-inertia particles in HIT expressed as (Saffman & Turner, 1956): 

Fig. 1. (a) Variation of the radial distribution function g( r /η,Stk) with the scaled separation distance r/η for Stk = 0.1 (triangles), 1.0 (circles), and 
2.0 (diamonds). (b) Probability density function of the radial relative velocity wr(r) (scaled by the Kolmogorov velocity uη) at different separation 
distances: r/η = 0.75 (circles), 1.75 (triangles), and 2.75 (diamonds) at Stk = 1.0. The open symbols in these two panels are results from our 
simulation at Reλ = 80 and the solid points are simulation results from (Ray & Collins, 2011) at Reλ = 95. (c) Collison kernel Γ, scaled by the 
collision kernel of zero-inertia particles Γ0, as a function of the Stokes number Stk from our simulation based on the direct counting (open circles) or 
estimated from the radial distribution function and the radial relative velocity (solid circles) at Reλ = 80. Results from Wang et al. (2000) (triangles) 
at Reλ = 75 and Fayed and Ragab (2013) (diamonds) at Reλ = 96 are also plotted for comparison. 
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Γ0(r)=
̅̅̅̅̅
8π
15

√

r3uη

η . (11)  

2.4. Model validations 

To validate the simulation method, we first turn off the Brownian force (i.e., FB = 0) and compare the simulation results with data 
in literature for non-Brownian inertia particles. The parameters in this validation case are not the same as the particle flame synthesis 
conditions in the results section. Since there is no available data for particles in the free-molecular regime in homogeneous isotropic 
turbulence. The Stokes number Stk is varied from 0.01 to 40 by varying the particle density. The particle diameter is set as 0.75η. Other 
setups are the same as Brownian particle simulations. The radial distribution function g(r) is plotted as a function of the separation 
distances (scale by the Kolmogorov length scale η) in Fig. 1(a) for Stk = 0.1, 1.0, and 2.0 and Reλ = 80. The value of g(r) at a given r/ η 
increases with Stk for low Stk, but decreases with Stk for high Stk. The results are in accord with previous findings that clustering is most 
remarkable for particles with Stk = O(1). The DNS simulation results from Ray and Collins (2011) are also plotted in Fig. 1(a) for 
comparison. A good agreement can be observed between the two data sets. The probability density function of the radial relative 
velocity wr, normalized by Kolmogorov velocity scale uη, at different separation distances r/η = 0.75, 1.75, and 2.75 are shown in 
Fig. 1 (b). Again, there is a good agreement between results from the current simulation and those in (Ray & Collins, 2011). In Fig. 1(c), 
we compare the collision kernels, which are calculated according to the direct counting (Eq. (8)) from DNS and to the model in Eq. 
(10), respectively, with those in literature. Overall, the simulation results from the current DNS simulation agree well with those from 
literature, indicating that the simulation method can correctly capture the effect of particle inertia on clustering. 

In the second part of the validation, we simulate the three-dimensional Brownian motion of 5000 particles in a stationary flow (i.e. 
uf = 0) using the Langevin equation (Eq. (2)) and compare the results with the solution of the diffusion equation, which is written as 

Fig. 2. (a) Spatial distribution of particles at t = 0.01 s. The inner domain is the region enclosed by the smaller circle and the outer domain is the 
region between the two circles. (b) Evolution of the transmission probability obtained by the Langevin simulation (solid line) and the solution of the 
diffusion equation (dashed line). The definition of the transmission probability is given in Eq. (13) and Eq. (14). 
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∂c
∂t

+∇ · (− D∇c)= 0. (12)  

Here, c denotes the particle concentration and D is the coefficient of diffusion, expressed as D = kBT/f . The particles are initially placed 
at the origin, c(t = 0) = δ(0,0,0). The particle diameter dp is 1× 10− 8m, the temperature is T = 300 K, and the corresponding co
efficient of diffusion is D = 5.2 × 10− 8 m2/s in this validation case. 

The spatial distribution of particles at t = 0.01 s is shown in Fig. 2 (a). As we can see, the Brownian force leads to the spreading of 
particles from regions of higher particle concentration to lower concentration. The transmission probability is calculated in both the 
Langevin simulation and the diffusion equation. The transmission probability (termed as αL and αD for Langevin simulation and so
lution of the diffusion equation, respectively) is defined as the fraction of particles that move from the inner domain (enclosed by the 
inner circle in Fig. 2 (a)) to the outer one (the region between two circles). For particles modeled by the Langevin equation, αL is 
calculated by dividing the number of particles in the outer domain No by the total particle number Np, while in the solution of the 
diffusion equation, αD is the ratio of the integral of the concentration over the outer domain to the integral over both the inner and 
outer regions. The expressions are as follows 

αL =
NO

Np
, (13)  

αD =

∫

O
cdV
∫

I+O
cdV

. (14) 

The evolution of the transmission probability obtained by the two methods from t = 0 s to t = 0.01 s is displayed in Fig. 2 (b). The 
simulation results are in good agreement with each other, indicating that the Langevin equation in the current work can well reproduce 
the diffusive behavior of Brownian particles. 

We also run a simulation of Brownian particles in turbulent flows based on Eq. (5) and compare the collision rate with the 
simulation results in Chun and Koch (2005). As shown in Fig. 3, the collision rate has been normalized by the collision kernel of the 
zero-inertia non-Brownian particles in HIT in Eq. (11). We follow Chun and Koch (2005) and define the particle-scale Peclet number in 

Fig. 3 as PeP =
Γηr2

p
D , where Γη = uη/η is the Kolmogorov shear rate. The pure Brownian collision rate and the collision rate for 

zero-inertia non-Brownian particles in HIT are plotted as solid and dashed lines in Fig. 3. One can see that, as PeP → 0 the collision rate 
from simulation approaches the pure Brownian collision rate, while turbulence plays the dominant role when PeP ≫ 1. The consistency 
between our results and those in Chun and Koch (2005) indicates that the numerical model in the current work can properly capture 
the effect of both Brownian motion and the turbulence. 

3. Results and discussion 

In this section, we discuss the results from the DNS-Langevin simulation with different Stokes and Peclet numbers and present the 
influence of Brownian motion and particle inertia on the radial distribution function (RDF) (Sec. 3.1), the radial relative velocity (Sec. 
3.2), and the collision kernel (Sec. 3.3). 

Fig. 3. Collision rate, scaled by the zero-inertia non-Brownian particles in HIT in Eq. (11), as a function of the particle-scale Peclet number. The 
solid diamonds are results produced by the model in Eq. (5) and the open circles are simulation results in Chun and Koch (2005). The pure Brownian 
collision rate and the zero-inertia particle collision rate for non-Brownian particles in HIT (Eq. (11)) are plotted as solid and dashed lines, 
respectively. 
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3.1. Radial distribution functions 

We first present the radial distribution function (RDF) g(r) as a function of the separation distance at different Stokes and Peclet 
numbers in Fig. 4. The separation distance r of the particle pairs has been scaled by the Kolmogorov length scale η. The influence of the 
Brownian motion is shown by varying the Peclet number at a fixed Stokes number (Stk = 0.112) (Fig. 4 (a)). A smaller value of Peclet 
number (i.e., stronger Brownian motion) results in a weaker particle clustering. Such effect is mainly observed within the range of 
small separation distance r/η. When r/η ≿ 1, g(r) values for different Pek numbers are almost the same, the influence of the Brownian 
motion thus can be neglected. One can also observe that for all Pek, the RDF decreases with increasing separation distance and ap
proaches unity at the large separation (r/η ≈ 10). It indicates that the clustering of inertial particles driven by small-scale vortices plays 
a dominant role in the distribution of particles over the spatial scale [η,10η], whereas the Brownian motion can distribute the particles 
more uniformly with a small length scale r < O(η). 

To further quantify the range of the anti-clustering effect of the Brownian motion, we calculate the relative displacement between 
two Brownian particles in the stationary fluid over the Kolmogorov time scale τη. According to the equation of motion of particles in Eq. 
(5) (neglecting the flow fluctuation), the displacement of a Brownian particle follows the normal distribution x/η ∼ N(0, 1 /Pek) and 
the relative displacement of two Brownian particles in a direction follows Δx/η ∼ N(0, 2 /Pek). The relative displacement of two 

Brownian particles in the three-dimensional space, Δr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Δx)2
+ (Δy)2 + (Δz)2

√

, can be estimated using the root mean square (RMS) 
of the random variable Δr, which is expressed as 

ΔrRMS

η ≡

̅̅̅̅̅̅̅̅̅̅̅̅

(Δr)2
√

η =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Δx)2
+ (Δy)2

+ (Δz)2
√

η =

̅̅̅̅̅̅̅

6
Pek

√

. (15) 

In Fig. 4 (a), the values of ΔrRMS/η for each case are indicated as vertical dashed lines, which separate the RDFs into two regimes. In 
the regime of r/η <

̅̅̅̅̅̅̅̅̅̅̅̅
6/Pek

√
, the Brownian motion has a strong anti-clustering effect and the RDF curve is flattened. When 

r/η >
̅̅̅̅̅̅̅̅̅̅̅̅
6/Pek

√
, the RDF curve begins to decrease and the difference between the curves with different Pek values gradually disappears. 

The value of RDF at r/η =
̅̅̅̅̅̅̅̅̅̅̅̅
6/Pek

√
is then noted as g0 , which reflects the clustering of particles (caused by both Brownian effect and 

turbulent effect) at small scales. In the inset of Fig. 4 (a), g0 is plotted as a function of Stk and Pek. The value of g0 decreases with 
increasing Pe− 1

k since the enhanced Brownian motion weakens the clustering of particles at small scales. For a given Pek, a larger Stk 

leads to larger g0 due to the clustering of particles induced by the particle inertia. The clustering of inertial particles driven by small- 
scale vortices can be clearly seen in Fig. 4 (b), where the Peclet number is fixed at Pek = 33.3 and the Stokes number is varied from 
0.022 to 0.112. For very light particles that can follow the fluid faithfully, the clustering effect is weak even for non-Brownian particles. 
Adding the Brownian random motion to the particles can further inhibit the clustering effect, especially at a small length scale. As the 
Stokes number increases from 0.022 to 0.112, clustering becomes more significant, which resembles the results for non-Brownian 
particles (Ray & Collins, 2011; Saw et al., 2008). 

The particle distribution, along with the vorticity magnitude, is plotted in Fig. 5 with and without the Brownian motion. The Stokes 
number is fixed at Stk = 0.112 and the Peclet number is Pek → ∞ in (a) and (d), Pek = 33.3 in (b) and (e), and Pek = 8.33 in (c) and (f). 
Plots (d), (e), and (f) are enlarged images from the red box in (a), (b), and (c), respectively. The particles tend to cluster in regions of 
low vorticity. There is no obvious difference among the three-particle fields when one observes on a large scale. However, when we 
plot the local enlarged image of a low-vorticity region with a dimension of O(η), the particles with stronger Brownian motion are more 
sparsely distributed. The observations are in accordance with the results in Fig. 4 that Brownian motion can distribute the particles 
more uniformly with a small length scale r < O(η). 

Fig. 4. (a) Radial distribution function (RDF) g(r /η,Stk, Pek) as a function of the scaled separation distance r/η for Pek → ∞ (open circles), Pek = 75 
(solid circles), 33.3 (open diamonds), and 8.33 (solid diamonds), at Stk = 0.112. The vertical dashed line indicates r/η =

̅̅̅̅̅̅̅̅̅̅̅̅
6/Pek

√
, which separates 

the non-decreasing and decreasing regimes of the g(r) curve according to Eq. (15). Inset: Variation of g0 with Pe− 1
k for Stk = 0.056 (circles), 0.09 

(triangles), and 0.112 (diamonds). (b) RDF as a function of r/η for Stk = 0.022 (open circles), 0.056 (solid circles), 0.09 (open diamonds), and 0.112 
(solid diamonds) at Pek = 33.3. 
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We then calculate the relative variation of the RDF due to the Brownian motion as follows 

Δĝ(r) =
g(r)NB − g(r)

g(r)NB
, (16)  

where g(r)NB is the RDF for non-Brownian particles (i.e. Pek → ∞). The relative variation Δĝ(r) at Stk = 0.112 for different Pek numbers 
is shown in Fig. 6. A two-regime behavior can be observed for all three curves. The value of Δĝ(r) quickly decreases at small r/ η and 
then remains near zero when r/η is larger than a certain critical value. In the small r/η range, Δĝ(r) for larger Pek has a larger value and 
a higher decreasing rate. The value of r/η, when Δĝ(r) decreases to 0.01 (indicated by the horizontal dashed line), is regarded as the 
critical value (termed as rRDF

c /η) separating the two regimes. The critical separation rRDF
c /η indicates the spatial range within which the 

Brownian motion impacts that particle clustering in the homogeneous isotropic turbulence. When plotted as a function of Pe− 1
k (as 

shown in the inset), rRDF
c /η has a quasi-linear increasing trend. 

Fig. 5. Particle distribution for Stk = 0.112 and (a, d) Pek → ∞, (b, e) Pek = 33.3, and (c, f) Pek = 8.33. The particles are superimposed in the 
vorticity contours in a 240η × 240η × 2η slice of the flow field. The color codes correspond to vorticity magnitude normalized by the root mean 
square (RMS) vorticity. (d), (e), and (f) are zoomed-in images of the red box in (a), (b), and (c). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. (a) Relative variation of the RDF Δĝ(r) (defined in Eq. (16)) due to the Brownian motion with the scaled separation distance r/ η for Pek =

300 (triangles), 75 (diamonds), and 33.33 (squares) at Stk = 0.112. The horizontal dashed line marks Δĝ(r) = 0.01. Inset: the critical separation 
distance rRDF

c /η, defined as the distance at which Δĝ(rRDF
c /η) = 0.01, as a function of the inverse of the Peclet number, Pe− 1

k . 
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3.2. Radial relative velocity 

The radial relative velocity (wr) is another key component that affects the collision rate of particles in the turbulent flow. Here, we 
calculate the probability density function (PDF) of wr (scaled by the Kolmogorov velocity scale uη) at different values of Stk and Pek and 
at a given separation distance (r/η = 0.75). For non-Brownian particles, PDF does not obviously change when the Stokes number Stk is 
increased from 0.022 to 0.112 (Fig. 7 (a)). This is due to the small particle inertia of the particles within the given range of the Stokes 
number. As shown in Fig. 7 (b), when taking the Brownian motion into account (Pek = 33.3), a remarkable difference between the 
PDFs of wr can be observed within the same range of Stk. Brownian particles with a smaller value of Stk tend to have a larger radial 
relative velocity. Such a phenomenon can be understood through a velocity superposition analysis (shown below). For a given Stokes 
number, the variation of PDF curves with Pek is presented in Fig. 7 (c). The velocity fluctuation caused by the Brownian motion 
contributes to the increase of the radial relative velocity, leading to a wider PDF curve of wr. 

The radial relative velocity is supposed to be a linear superposition of the radial relative velocity caused by turbulence effect and 
Brownian motion, and we assume that the radial relative velocity of Brownian particles in the homogeneous isotropic turbulent flow 
can be obtained by adding a random velocity component caused by Brownian fluctuation to the radial relative velocity of non- 
Brownian particles with the same Stokes number. This velocity superposition analysis can be written as 

wr(Stk,Pek)

uη
=

wr(Stk, Pek = ∞)

uη
+ ω̂ST

r (Stk, Pek) (17)  

where ω̂ST
r (Stk,Pek) is a random variable that follows the normal distribution N (0, (StkPek)

− 1
) reflecting the Brownian effect on the 

relative motion, and wr(Stk,Pek = ∞) represents the turbulence effect on the radial relative velocity. The derivation and validation of 
the normal distribution for ω̂ST

r (Stk,Pek) is shown in Appendix A. In Fig. 8, we compare the PDF of wr/uη that is calculated from Eq. (17) 
(shown as lines) with those calculated from DNS simulations (shown as symbols). A good agreement between the two data sets can be 
observed, indicating that once we know the PDF of wr/uη of non-Brownian particles in HIT, the PDF of Brownian particles with the 
same Stk but different Pek values can be easily obtained from Eq. (17). 

We then discuss how the PDF of relative radial relative velocity wr(r) and the mean radial inward velocity 〈wr〉(− ) vary with the 
interparticle separation r. The mean radial inward velocity at a given separation r is calculated as (de Jong et al., 2010): 

〈wr〉(− )
=

∫0

− ∞

− wr(r)P(wr |r)dwr. (18) 

Fig. 7. Probability density function (PDF) of the radial relative velocity wr(r) (scaled by the Kolmogorov velocity uη) at the separation distance r/
η = 0.75 for Stk = 0.022 (open circles), 0.056 (solid circles), 0.09 (open diamonds), and 0.112 (solid diamonds) with (a) Pek → ∞ (non-Brownian 
particles) and (b) Pek = 33.3. (c) PDF of wr(r)/uη at r/η = 0.75, and 33.3 (solid diamonds) at Stk = 0.112. 
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In Fig. 9 (a), the 〈wr〉(− )/uη is plotted as a function of the scaled separation distance r/η for different values of Pek at Stk = 0.112. As r/ η 
decreases, there will be a stronger correlation between the velocity of a pair of particles, leading to a decrease of 〈wr〉(− )/ uη. For non- 
Brownian particles (Pek → ∞) with negligible inertia, the radial inward velocity is essentially zero at the limit r/η → 0 since the two 
particles follow the streamline at the same position. Due to the random velocity of the Brownian motion, 〈wr〉(− ) at the zero separation 
limit is non-zero and increases with the decrease of Pek. 〈wr〉(− ) at r/η → 0 can be well estimated using the PDF of wr(r) of Brownian 
particles in the stationary fluid (shown as dashed lines in Fig. 9 (a)). At a large separation distance (say, r/η = 10), the radial relative 
velocity wr(r) is mainly caused by the fluid velocity difference at the position of the two particles. The difference between the values of 
〈wr〉(− ) for different values of Pek, therefore, is no longer obvious. 

The relative increase of the mean radial inward velocity of Brownian particles with respect to that of non-Brownian particles 
(termed as 〈wr〉(− )

NB ) is calculated as Δ〈wr〉(− )/〈wr〉(− )

NB ≡ (〈wr〉(− ) − 〈wr〉(− )

NB )/〈wr〉(− )

NB and is plotted as a function of the separation distance 
in Fig. 9 (b). When r/η < 1, Δ〈wr〉(− )/〈wr〉(− )

NB decreases with r/η and the curve with a larger value of Pek has a higher decreasing rate. As 
r/η increases, the increment of the mean radial inward velocity Δ〈wr〉(− ) decreases whereas the mean radial inward velocity due to the 
non-uniform flow velocity 〈wr〉(− )

NB increases, which leads to the decrease of Δ〈wr〉(− )/〈wr〉(− )

NB . When r/η is sufficiently large, Δ〈wr〉(− )/

〈wr〉(− )

NB is close to zero implying that the role of Brownian motion on particle relative velocity can be neglected at a large length scale. In 
the inset of Fig. 9 (b), the critical separation rRRV

c /η, which is defined as the distance when Δ〈wr〉(− )/〈wr〉(− )

NB decreases to 0.1, is plotted 
as a function of Pe− 1

k . The value of rRRV
c /η almost increases linearly with the inverse of the Peclet number. The trend of rRRV

c / η is similar 
to that of the critical separation of the radial distribution function, rRDF

c /η, as shown in Fig. 6. 

3.3. Estimation of collision kernel 

In this section, we use RDF and the distribution of the radial relative velocity to construct the collision kernel for Brownian par

Fig. 8. Probability density function of the radial relative velocity wr(r) (scaled by the Kolmogorov velocity uη) at r/η = 0.75 from simulation results 
(symbols) for Pek = 300 (triangles), 75 (diamonds), and 33.3 (squares) and obtained by the velocity superposition analysis in Eq. (17) (shown as 
lines). Panels (a) and (b) are results for Stk = 0.112 and 0.056, respectively. 

Fig. 9. (a) Variation of the mean radial inward velocity 〈wr〉(− ), scaled by Kolmogorov velocity uη, with the scaled separation distance r/ η for Pek → 
∞ (circles), Pek = 300 (triangles), 75 (diamonds), and 33.3 (squares) at Stk = 0.112. The horizontal dashed lines indicate the mean radial inward 
velocities of Brownian particles in the stationary fluid. (b) The ratio between the variation of the mean radial inward velocity differences Δ〈wr〉(− ), 
scaled by the mean radial inward velocity without Brownian motion 〈wr〉

(− )

NB , as a function of the scaled separation distance r/ η. The legends are the 
same as those in (a). Inset: variation of the critical separation distance rRRV

c /η with Pe− 1
k for Stk = 0.056 (circles), 0.09 (triangles), and 

0.112 (diamonds). 
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ticles. As shown in Table 1, the particle diameter is smaller than the Kolmogorov length scale by four orders of magnitude. The statistics 
for the collision rate, the radial distribution function, and the radial relative velocity at such a small separation are not available. 
Therefore, we model the geometric collision kernel (Ayala et al., 2008) for particles at the separation r ∼ O(η) using Eq. (10) (Sun
daram & Collins, 1997) and look at how Γ(r) varies with r when r approaches zero. 

In Fig. 10, the modeled geometric collision kernel, scaled by the kernel for inertialess non-Brownian particles Γ0, is plotted as a 
function of the collision distance r. Due to the small value of Stk, Γ/Γ0 for particles without Brownian motion is close to unity and only 
slightly increases as Stk increases from 0.022 to 0.112. Introducing the Brownian motion (Pek = 33.3) significantly increases the 
geometric collision kernel, especially at a small separation. At this value of Pek, particles with a smaller Stk have a larger geometric 
collision kernel. According to the results in Fig. 7 (b), given a fixed value of Pek, particles with a smaller Stokes number tend to have a 
larger radial relative velocity, which results in a higher value of Γ/Γ0. The influence of the intensity of the Brownian motion (Pek) on 
the geometric collision kernel is presented in Fig. 10 (b). One can see that the Brownian motion promotes particle collision, especially 
at the sub-Kolmogorov scale. Despite that the anti-clustering effect of the Brownian motion gives rise to a smaller value of g(r), the 
increased radial relative velocity counteracts the anti-clustering effect on the geometric collision kernel and leads to a larger value of 
Γ/Γ0. 

We then discuss how the geometric collision kernel scales with the collision radius, r/η, when r/η approaches zero. According to the 
results in Fig. 4, when the Brownian motion is strong, the radial distribution function approaches an asymptotic value, i.e., g(Stk,Pek,

r /η) → g0(Stk,Pek), at the small separation limit (r /η → 0). The mean radial inward velocity 〈wr〉(− )/uη can be well estimated using the 
PDF of wr(r) of Brownian particles in the stationary fluid (Eq. (17)) and is expressed as 

〈wr〉(− )

uη
≈

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π ·Stk ·Pek

√ ,when r / η → 0. (19) 

Substituting g(r) and 
∫0

− ∞

− wr(r)P(wr|r)dwr into Eq. (10) with the corresponding asymptotic values and Γ0 with 
̅̅̅̅
8π
15

√
r3uη

η (Saffman & 

Turner, 1956), we have 

Γ /Γ0 ≈

̅̅̅̅̅
15

√
g0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Stk ·Pek

√
(r

η

)− 1
when r / η → 0. (20) 

To verify the asymptotic value of Γ/Γ0 at the small collision distance limit, we calculate the value of Γ/Γ0 by adopting three 
different methods. (i) Γ is calculated according to Eq. (8), where the collision rate is obtained from DNS simulation. The geometric 
collision kernel determined in this way is numerical results and is termed as ΓDNS. (ii) The geometric collision kernel Γ is modeled 
according to Eq. (10), in which the RDF g(r) and the PDF of RRV are fitted from DNS results. The geometric collision kernel calculated 
in this way is termed as ΓEST1. (iii) Γ is calculated according to Eq. (20), where g0 is the asymptotic value of g(r) at the small r/ η limit 
(calculated at r/η =

̅̅̅̅̅̅̅̅̅̅̅̅
6/Pek

√
according to Eq. (15)). The geometric collision kernel calculated in this way is recorded as ΓEST2. In the 

first method, the collision number recorded is at least 4 × 103 to ensure reasonable statistics and the overall simulation time is long 
enough to ensure that the geometric collision kernel has reached its steady-state value. 

The geometric collision kernel, Γ/Γ0, calculated in these three ways are shown in Fig. 11 as open symbols, solid symbols, and 
dashed lines, respectively. Here, the Stokes number is Stk = 0.112 and the Peclet number is varied from 3.0 to 75. One can see that Γ/
Γ0 values given by the three ways are quite close to each other. It implies that the collision kernel for Brownian particles, whose size is 
much smaller than the Kolmogorov scale (dp ≪ η), can be well predicted using Eq. (20). When the Brownian motion is strong, the 
parameters in Eq. (20) are either known a priori (such as Stk, Pek, and η) or can be calculated from DNS at a finite collision distance 
(r/η ∼

̅̅̅̅̅̅̅̅̅̅̅̅
6/Pek

√
) (recall that g(r /η) → g0 at a finite value of r/η when Pek is relatively small). Since there are obvious asymptotic be

haviors of radial distribution function and radial relative velocity at the small separation, and the collision events are determined by 

Fig. 10. (a) Variation of the modeled geometric collision kernel Γ (Eq. (10)), scaled by the collision kernel of inertialess particles Γ0, as a function of 
the collision distance r/η for Stk = 0.056 (circles), 0.09 (triangles), and 0.112 (diamonds) at Pek → ∞ (solid symbols) and Pek = 33.3 (open symbols). 
(b) Scaled geometric collision kernel Γ/Γ0 for Pek → ∞ (circles), Pek = 300 (triangles), 75 (diamonds), and 33.3 (squares) and Stk = 0.112. 
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the collision geometry, the particle distribution, and particle velocities according to Eq. (10), it is a reasonable to estimate the real 
collision kernel at r = dp by extrapolating the geometric collision kernel with asymptotic values. However, detailed experimental 
validation is required in future. 

It is of interest to compare the collision kernel in Eq. (20) with the Brownian collision kernel for particles with a diameter much 
smaller than the gas mean free path, which is expressed as (Friedlander, 2000) 

Γ
(
vi, vj

)
=

(
3

4π

)1
6
(

6kBT
ρp

)1
2
(

1
vi
+

1
vj

)1
2
(

v
1
3
i + v

1
3
j

)2

. (21)  

Here, vi is the volume of particle i. For monodisperse particles, the collision kernel scaled by the collision kernel of the zero-inertia 
particles in homogenous isotropic turbulence Γ0 takes the form 

Γ /Γ0 =

̅̅̅̅̅
15

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Stk ·Pek

√

(
dp

η

)− 1

. (22)  

One can see that the difference is the radial distribution function g0, which reflects the inhomogeneous particle distribution caused by 
the turbulence. The difference between Eq. (20) and Eq. (22) highlights the feature brought out by turbulence. 

4. Conclusions 

In this work, the clustering and collision of Brownian particles in homogeneous isotropic turbulence are investigated using DNS and 
the Langevin dynamics. We have calculated the radial distribution function (RDF), g(r), and the radial relative velocity (RRV), wr(r), 
for particles with different inertia (Stk = 0.022 ∼ 0.112) and Brownian motion intensity (Pek = 3.0 ∼ ∞). We find that the Brownian 
motion can distribute the particles more uniformly over a small spatial range, leading to the formation of a plateau on the g(r) curve at 
a small separation r. The range of r , where the plateau of the g(r) curve appears, can be estimated by the root mean square value of the 
relative displacement between two Brownian particles over the Kolmogorov time scale τη. The anti-clustering effect of the Brownian 
motion is then quantified by the relative variation of the RDF, Δĝ(r), which quickly decreases at small r/η and then remains near zero 
when r/η is larger than a certain critical value. 

The radial relative velocity is significantly enhanced, especially at the small separation distance, when the Brownian motion is 
taken into account. A velocity superposition analysis shows that the statistics of wr of Brownian particles can be obtained by adding a 
random variable ω̂ST

r onto the radial relative velocity of non-Brownian particles with the same Stokes number. Here, ω̂ST
r is a random 

variable that describes the radial relative velocity of two Brownian particles in the stationary fluid and follows the normal distribution 
N (0, (StkPek)

− 1
). 

The geometric collision kernel (Γ(r)) for particles at the separation r ∼ O(η) is then calculated. Despite that the Brownian motion 
gives rise to a smaller value of g(r), the increased radial relative velocity counteracts the anti-clustering effect on the geometric 
collision kernel and leads to a larger value of Γ(r). We then proposed an analytical expression for the mean radial inward velocity 
〈wr〉(− ) at the small separation limit (r/η → 0). Based on the asymptotic values of 〈wr〉(− ) and RDF g(r), we can predict the collision 
kernel of Brownian particles at a vanishing interparticle separation distance. The current work focuses on the collision rate of 
monodisperse nanoparticles, which is relevant in the early stage of the agglomeration process. The following growth of the ag
glomerates is strongly influenced by the clustering and collision between agglomerates in turbulence (Njobuenwu & Fairweather, 
2018). An accurate simulation of the motion of nanosized agglomerates (for example, using DNS-Langevin dynamics) requires the 

Fig. 11. Geometric collision kernel, Γ/Γ0, as a function of the collision radius r/η, for particles with Peclet number Pek = 75 (circles), 33.3 (tri
angles), 8.33 (diamonds), and 3.0 (squares) and Stk = 0.112. Here, Γ0 is the collision kernel for zero-inertia particles (Saffman & Turner, 1956). The 
open symbols are results given by counting the collision number in DNS simulations (ΓDNS/Γ0). Solid symbols are results modeled according to Eq. 
(10) using the radial distribution function g(r) and the mean radial inward velocity 〈wr〉(− ) (ΓEst1/Γ0). Dashed lines are results predicted from the 
asymptotic values of g(r) and 〈wr〉(− ) according to Eq. (20) (ΓEst2/Γ0). 
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knowledge of hydrodynamic forces on agglomerates with irregular shapes (Chen et al., 2022; Qian et al., 2022). The growth rate, size, 
and structural evolution of agglomerates under the turbulent transport and Brownian motion will be investigated in the future. 
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Appendix 

A. Derivation and validation of Brownian radial relative velocity 

The Brownian fluctuation on radial relative velocity can be obtained by calculating the velocity distributions of Brownian particles 
with different combinations of Stk and Pek in a virtual stationary fluid. This can be simply done by setting the fluid velocity in Eq. (5) to 
zero (ûf = 0). The radial relative velocity of Brownian particles in the stationary fluid (termed as wST

r ) is calculated and the PDF of wST
r 

is constructed, shown in Fig. A1(a) for two Stokes numbers (Stk = 0.11 and 0.056) and three Peclet numbers (Pek = 300, 75, and 33.3). 
For a better comparison between the radial relative velocity of Brownian particles wST

r with that caused by the turbulence, we still use 
the Kolmogorov scales to normalize the quantities of Brownian particles in the stationary fluid. The normalization process introduces 
the parameters Pek and Stk. It is straightforward that particles with a stronger Brownian motion tend to have a wider PDF of wST

r . 
Reducing particle inertia also helps to increase the radial relative velocity. The radial relative velocity and the PDF are then stan
dardized according to 

(
wST

r

/
uη
)∗

=
wST

r

/
uη

σST
, (23a)  

P∗
( (

wST
r

/
uη
)∗ )

= P
(
wST

r

/
uη
)
· σST. (23b)  

Here, σST is the standard deviation of the scaled radial relative velocity wST
r /uη. As shown in Fig. A1 (b), the standardized PDF for all the 

six cases in Fig. A1 (a) well follows the standard normal distribution N (0, 1). Consequently, σST becomes the only parameter that 
determines the PDF of wST

r /uη of Brownian particles in the stationary fluid. 

Fig. A.1. (a) Probability density function of the relative radial velocity wST
r (r) (scaled by the Kolmogorov velocity uη) for Brownian particles in the 

stationary fluid with Stk = 0.056 (open symbols) and 0.112 (solid symbols) and Pek = 300 (triangles), 75 (diamonds), and 33.3 (squares). (b) 

Standardized PDF of the radial relative velocity 
(
wST

r /uη
)∗

≡
wST

r /uη
σST 

for the same cases as those in (a). The black dashed line stands for the standard 

normal distribution N (0,1). In the inset of (b), the squared standard deviation σ2
ST is compared with (StkPek)

− 1 and the dashed line indicates σ2
ST =

(StkPek)
− 1. 

From Eq. (5), one can derive that the velocity component in each direction, ux/uη, of Brownian particles in the stationary fluid 
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follows the normal distribution N
(

0, 1
2StkPek

)
. The distribution of the relative velocity between two particles in a given direction, 

Δux /uη = (ui,x − uj,x) /uη, thus is also a normal distribution N
(

0, 1
StkPek

)
. The magnitude of the relative velocity between two particles, 

ΔU/uη =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δu2

x + Δu2
y + Δu2

z

√
/uη, follows the Maxwell-Boltzmann distribution 

PΔU/uη (ΔU / uη)=

̅̅̅̅
2
π

√
(ΔU/uη)

2

a3 exp

(

−
(ΔU/uη)

2

2a2

)

, (24)  

where the parameter a = (StkPek)
− 1

2. The distribution of the radial relative velocity can be calculated from the distribution of the 
relative velocity ΔU and the distribution of cos θ, with θ being the angle between the relative velocity and the line connecting the 
center of the two particles. It gives 

P
(

wST
r

uη

)

=
1̅̅̅
̅̅

2π
√

a
exp

(

−

(
wST

r

/
uη
)2

2a2

)

, (25)  

which implies that the radial relative velocity of Brownian particle in the stationary fluid should follow the normal distribution of N (0,
(StkPek)

− 1
). The squared standard deviation σ2

ST produced by the simulation of Brownian particles in the stationary fluid is compared 
with (StkPek)

− 1 in the inset of Fig. A1 (b). All the data points collapse onto the curve of σ2
ST = (StkPek)

− 1, which is in accordance with 
the analytical expression in Eq. (25). 
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