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A B S T R A C T   

Polychlorinated dibenzo-p-dioxin/furans (PCDD/F) have a great threat to the environment and human health, 
resulting in controlling PCDD/F emissions to regulation far important for emission source. Considering 2,3,4,7,8- 
pentachlorodibenzo-p-furan (PeCDF) identified as the most contributor to international toxic equivalent, 
2,3,4,7,8-PeCDF can be considered as the target molecule for the adsorption of PCDD/F emission from industries. 
With the aim to in-depth elucidate how different types of nitrogen (N) species enhance 2,3,4,7,8-PeCDF on the 
biochar and guide the specific carbon materials design for industries, systematic computational investigations by 
density functional theory calculations were conducted. The results indicate pristine biochar intrinsically interacts 
with 2,3,4,7,8-PeCDF by π-π electron donor and acceptor (EDA) interaction, six-membered carbon rings of PeCDF 
parallel to the biochar surface as the strongest adsorption configuration. Moreover, by comparison of adsorption 
energy (− 150.16 kJ mol− 1) and interaction distance (3.593 Å) of pristine biochar, environment friendly N 
doping can enhance the adsorption of 2,3,4,7,8-PeCDF on biochar. Compared with graphitic N doping and 
pyridinic N doping, pyrrolic N doping biochar presents the strongest interaction toward 2,3,4,7,8-PeCDF 
molecule due to the highest adsorption energy (− 155.56 kJ mol− 1) and shortest interaction distance (3.532 
Å). Specially, the enhancing adsorption of PeCDF over N doped biochar attributes to the enhancing π-π electron 
EDA interaction and electrostatic interaction. In addition, the effect of N doping species on PeCDF adsorbed on 
the biochar is more than that of N doping content. Specially, the adsorption capacity of N doping biochar for 
PCDD/F can be improved by adding pyrrolic N group most efficiently. Furthermore, pyrrolic N and pyridinic N 
doping result in the entropy increase, and electrons transform from pyrrolic N and pyridinic N doped biochar to 
2,3,4,7,8-PeCDF molecule. A complete understanding of the research would supply crucial information for 
applying N-doped biochar to effectively remove PCDD/F for industries.   

1. Introduction 

Polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/F) are 
concerned with persistent organic pollutants due to extremely toxic and 
high carcinogenicity (Schecter, 2013). As a result, PCDD/F has a great 
threat to the environment and human health (Kulkarni et al., 2008). 
Generally, PCDD/F is a highly toxic persistent organic pollutant from 
industrial manufacture (cement/power production), waste incineration, 
and biomass incineration et al. (Huang et al., 2022). Therefore, con-
trolling PCDD/F emissions to regulation is far more important for 
emission sources. Recently, as for the removal of PCDD/F from indus-
trial manufacture, the adsorption technique to remove PCDD/F 

emissions has attracted significant interest. Developing effective and 
cost materials to remove dioxins is now in urgent need. Tailored zeolites 
(Jäger et al., 2004), ZnO nanowires imidazolium-based ionic liquid (Pan 
et al., 2013), activated carbon (Atkinson et al., 2015; Ottaviani et al., 
2011), graphene sheets (Kang, 2005; Zhang et al., 2014), and carbon 
nanotubes (Fagan et al., 2007; Long and Yang, 2001) have been studied 
to adsorb PCDD/F in experimental or theoretical fields. Modified acti-
vated carbon, graphene sheets, and carbon nanotubes are classified into 
carbon materials. Carbon materials show excellent adsorption ability 
and enhance interaction between tetrachlorodibenzo-p-dioxin (TCDD) 
and carbon materials, which was proven by the density functional the-
ory (DFT). Overall, carbon material adsorption (Chang et al., 2009) has 
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been regarded as the most popular method to remove PCDD/F emissions 
due to the advantages of the high removal efficiency (>90%) and 
acceptable cost. 

To develop carbon materials with excellent adsorption performance, 
metals atom doped has been constructed to enhance the interaction 
between TCDD and carbon materials in theoretical aspects, which in-
cludes Ni-doped boron nitride nanotubes (Wang et al., 2017b), 
Ni/Cu-doped graphene, Ca/Ti/S/Se-doped phosphorene (Zhang et al., 
2017), Ti/Ag-doped graphene (Zhang et al., 2014). Metals atom doping 
can effectively improve adsorption ability towards the TCDD molecule 
due to the enhancing electronic transport capability of carbon materials. 
However, for the synthesis of metals doping carbon materials, the sec-
ond pollution and high cost cannot be neglected in theory. In addition, in 
experiment aspects, Fe(NO3)3 (Zhao et al., 2015), sulfur-doped, bromi-
ne-doped active carbon (Atkinson et al., 2015), and carbamide modifi-
cation (Zhan et al., 2021) have been proved to improve adsorption 
efficiency. However, chemical activation by Fe(NO3)3 H2SO4, NaOH, 
and KOH consumes massive acids or alkalis and is relatively not safe and 
ecologically harmful for applications. Therefore, an effective green 
carbon material with chemical functional groups is needed up to now. 

Nowadays, nitrogen doping biochar is considered a promising 
adsorbent for organic pollutants from incineration among carbon ma-
terial due to its environmentally friendly and effective adsorption (Wan 
et al., 2020). Volatile organic compounds (VOCs) have been proven to 
be absorbed in nitrogen doping biochar effectively (585 mg/g) (Lu et al., 
2021). Moreover, as for the adsorption of SO2 (Qu et al., 2018a), 
phenanthrene (Wang et al., 2020), and methanol (Ma et al., 2019), the 
effect of nitrogen doping has been reported. N doping can not only 
enhance the interaction between target pollutants and the surface but 
also increase the adsorption capacity. As for the PCDD/F adsorption on 
carbon materials in the experimental field, most research (Qiu et al., 
2018; Shen and Zhang, 2019) focuses on the pore structure of activated 
carbon by Alkali metal activation and microwave radiation, due to the 
significant impact of pore structure (Karademir et al., 2004; Li et al., 
2016). Though in the experimental field, active carbon modified by urea 
(Zhan et al., 2021) has been conducted to adsorb PCDD/F, by modifying 
the N functional group on activated carbon surface. However, no 
research reports the adsorption of PCDD/F on nitrogen doping biochar 
in theoretical field, resulting in the lack of in-depth understanding for 
the adsorption between PCDD/F and biochar. Therefore, environmental 
nitrogen doping biochar with the high removal efficiency is lacking. 

Among two hundred and ten PCDD/F congeners, 2,3,7,8- TCDD is 
the most toxic one. Due to the centrosymmetric and axisymmetric 
structure, the 2,3,7,8-TCDD molecule can be favored in theoretical as-
pects. All previous studies (Fagan et al., 2007; Pan et al., 2013; Zhang 
et al., 2014, 2017) have adopted the 2,3,7,8-TCDD molecule as a sub-
stitution to investigate the adsorption of PCDD/F on the surface, owing 
to 2,3,7,8-TCDD as the most toxic congener. However, according to the 
PCDD/F emission inventory in China (Huang et al., 2022), PCDD/F 
emissions are mainly from cement production, coke production, and 
waste incineration (including municipal, industrial, and medical waste). 
Among PCDD/F congeners from the main emission inventories (in-
dustries), 2,3,4,7,8-pentachlorodibenzo-p-furan (PeCDF) (Fu et al., 
2022; Lin et al., 2014; Ryu et al., 2005) has been identified as the most 
contributor (>30%) (Zhang et al., 2022) to international toxic equiva-
lent (I-TEQ), with great threat to ecosystems (Zhang et al., 2023) and 
human health (Yang et al., 2022). On the other hand, the 2,3,7,8-TCDD 
contributes less than 5% to I-TEQ among 2,3,7,8-substituted congeners. 
Therefore, 2,3,4,7,8-PeCDF can be considered the target molecule for 
the adsorption of PCDD/F. For aromatic pollutants (naphthalene (Wang 
et al., 2017a) and phenanthrene (Wang et al., 2020)) on graphene-like 
biochar surfaces, previous studies have reported π–π electron donor 
and acceptor (EDA) interaction was essential, compared with Lewis 
acid–base interactions (Li et al., 2019) and hydrogen bonding (Yang 
et al., 2017). Perdew-Wang functional within generalized gradient 
approximation has been widely adopted to accurately describe the 

exchange-correlation energy for 2,3,7,8-TCDD molecule over surface. In 
addition, the dispersion effect for the conjugate system with the π-π EDA 
interaction was neglected for 2,3,7,8-TCDD molecules and surfaces 
(Izakmehri et al., 2017; Pan et al., 2013; Qian et al., 2011; Wang et al., 
2017b; Zhang et al., 2014). Owing to the PeCDF-biochar system as 
weakly bound complexes, the van der Waal correction must be adopted 
to obtain exact calculation results. Up to now, no report about 2,3,4,7, 
8-PeCDF adsorbed on biochar can be found. In addition, the specific N 
functional group doping biochar with most strong interaction with 
PCDD/F can guide the design of biochar with excellent adsorption 
capacity. 

In the present study, with the aim to in-depth elucidate how different 
types of N species enhance 2,3,4,7,8-PeCDF on the biochar and guide the 
specific carbon materials design for industries, systematic computa-
tional investigations by DFT-D calculations were conducted. First, the 
properties of 2,3,4,7,8-PeCDF and N-doped biochar were investigated to 
ensure lying configuration and standing configuration for the interac-
tion between 2,3,4,7,8-PeCDF and pristine biochar. Moreover, the in-
teractions between 2,3,4,7,8-PeCDF and N-doped biochar were 
compared by adsorption energy and interaction distance. In addition, 
the electronic properties and density of state were deeply calculated to 
reveal the electron transformation. The effect of N content was inves-
tigated to reveal the relationship between N content and adsorption 
energy. Furthermore, the effect of temperature and pressure on the 
PeCDF absorbed in the biochar was investigated. A complete under-
standing of the research would supply crucial information for applying 
N-doped biochar to effectively remove PCDD/F for industries. 

2. Computational details 

2.1. Calculation setting 

The adsorption between biochar material and PeCDF molecule was 
studied with the density functional theory (DFT) method. Based on the 
previous study (Kong and Chen, 2013; Wang et al., 2020), pristine 
graphene was considered as the model surface. Considering the π-π EDA 
interaction of the benzene ring, van der Waals interaction is introduced 
into the calculation system according to density functional theory based 
on dispersion correction (DFT-D3) (Georgieva et al., 2017; Grimme 
et al., 2010; Hafner, 2008). The interactions between the valence elec-
trons and the ionic core were described with the projected augmented 
wave (PAW) method (Enkovaara et al., 2010). The electronic 
exchange-correlation potential was treated using the generalized 
gradient approximation (GGA) function and Perdew-Burke-Ernzerhof 
(PBE) function (Wang et al., 2017b; Zhang et al., 2017). For the opti-
mization of the 2,3,4,7,8-PeCDF molecule, the molecule was put into a 
space lattice of a = b = c = 15 Å, and the K points were set 5 × 5 × 5. As 
shown in Fig. S3, the pristine or doped biochar contains 100 atoms. 
Therefore, the pristine or doped biochar is placed inside a large cell of 
17.2 Å × 17.2 Å × 25 Å to neglect the interaction between biochar in the 
bundle safely. The Brillouin zone was sampled with a Monkhorst-Pack 
k-point grid of 2 × 2 × 1 for pristine or doped biochar. To determine 
the optimum adsorption sites and geometries, the 2,3,4,7,8-PeCDF 
molecule and each biochar surface were allowed to relax uncon-
strainedly until residual forces on all atoms had reached 0.03 eV Å− 1. All 
calculations were carried out in Vienna Ab-initio Simulation Package 
(VASP) version 5.4.4. After optimizing the molecule, biochar, and 
molecule-biochar structure, the change of total energy is less than 10− 7 

eV, which meets the standard of convergence (Fang et al., 2020). The 
highest occupied molecular orbital (HOMO) and lowest unoccupied 
molecular orbital (LUMO) were calculated to describe the characteristic 
of the 2,3,4,7,8-PeCDF molecule. The figures of electronic properties 
were draw by VESTA3 (Momma and Izumi, 2011). 
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2.2. Calculation analyses 

In order to acquire different aspects of calculation results, the 
following aspects are raised. 

2.2.1. Adsorption strength of PeCDF 

The adsorption energy (Ead), indicating the intensity of interaction 
between a PeCDF molecule and biochar, is derived according to the 
following equation (1): 

Ead = Esurface+PeCDF −
(
Esurface + EPeCDF

)
(1)  

where Esurface+PeCDF, EPeCDF, and Esurface represent the total energy of the 
PeCDF-biochar system, the energy of the PeCDF molecule, and the en-
ergy of the pristine, N doped biochar, respectively. A negative Ead value 
corresponds to stable adsorption, and the more negative the Ead is, the 
more stable the adsorption will be. 

The difference charge density was utilized to study the change in 
charge density during adsorption, calculated by subtracting the charge 
density of the isolated PeCDF molecule (ρPeCDF) and the phosphorene 
surface (ρsurface) from the total charge density of the system 
(ρPeCDF+surface), as shown in Equation (2): 

△ρ = ρPeCDF+surface − ρPeCDF − ρsurface (2) 

The density of states (DOS) and partial density of states (PDOS) 
analysis can be effective methods of exploring the interactions between 
PeCDF molecules and N-doped biochar at the electronic level. 

2.2.2. Effect of temperature and pressure on adsorption energies 

To reflect how temperatures affect adsorption energies of PeCDF 
over N-doped biochar, Gibbs free energy is introduced to reflect 
adsorption energies. The definitions for Gibbs free energies are seen as 
follows (Hu et al., 2021; Yang et al., 2019): 

Ggas(T) = Emole + ZPE + RT − TS (3)  

Gsolid(T) = Esurface + ZPE − TS #(AUTONUM \ ∗ Arabic) (4)  

where Ggas(T)/ Gsolid(T) are Gibbs free energies of gases/solids, respec-
tively, Emole/ Esurface is the ground-state energy of the molecule or surface, 
ZPE is zero-point energy correction, R is the gas constant (i.e. 8.314 J 
mol− 1⋅K− 1), T is the temperature, and S is the entropy computed from 
vibrational frequency calculations. 

Then, to reflect how pressure affects adsorption energies of PeCDF 
over N-doped biochar, Gibbs free energies are introduced to adsorption 
energies. 

Ggas(P) = Emole + ZPE + RT0P
/

P0 − T0S (5)  

Gsolid(P)=Esurface + ZPE + RT◦P/P◦
− T◦S (6) 

The Gibbs adsorption energy is defined as follows (Yang et al., 2019): 

Gad = Gsurface+PeCDF −
(
Gsurface + GPeCDF

)
(7)  

where Gsurface+PeCDF , GPeCDF, and Gsurface represent the total energy of the 
PeCDF-biochar system, the energy of the PeCDF molecule, and the en-
ergy of the pristine, N doped biochar, respectively. The post-processing 
of the VASP calculated data and calculation of Gibbs free energy were 
conducted in the post-processing VASPKIT package (Wang et al., 2021). 

3. Results and discussion 

3.1. Structure of 2,3,4,7,8-PeCDF and N-doped biochar 

3.1.1. Feature of 2,3,4,7,8-PeCDF 
The optimized structure of 2,3,4,7,8-PeCDF molecules is shown in 

Fig. 1 (a). The parameters of band length are exhibited in Table S1. 
Deduced from the difference in bond length of two carbon rings, the 
2,3,4,7,8-PeCDF molecule presents inconsistent characteristic. Accord-
ing to the electrostatic potential of the 2,3,4,7,8-PeCDF molecule in 
Fig. 1 (b), the electrostatic potential of hydrogen is higher than that of an 
oxygen atom and chlorine atoms. As a result, two adsorption geometries 
of PeCDF standing on biochar with two hydrogen atoms (Fig. 1 (d)) and 
an oxygen atom (Fig. 1 (f)) must be considered. Owing to the uniform 
electrostatic potential, the configuration of PeCDF lying on biochar 
(Fig. 1 (g)) must be conducted. The LUMO and HOMO are − 0.0837 eV 
and − 0.2529 eV, respectively. Hence, the HOMO-LUMO gap is − 0.1692 
eV. The PeCDF molecule tends to receive electronics. In addition, as 
shown in Figs. S2(a) and (b), the LUMO and HOMO map of molecule 
presents inconsistency of chlorine atoms connected on two carbon rings. 
Therefore, two adsorption geometries of PeCDF standing on biochar 
with three chlorine atoms (Fig. 2 (c)) and two chlorine atoms (Fig. 1 (e)) 
must be considered. In summary, five configurations of PeCDF on bio-
char must be calculated, which is more than that of TCDD on graphene 
(Kang, 2005) or phosphorene (Zhang et al., 2017). Nevertheless, the 
results indicate the calculation of PeCDF adsorbed on biochar is harder 
than that of 2,3,7,8-TCDD on biochar. 

3.1.2. Feature of N-doped biochar 
Firstly, according to X-ray photoelectron spectroscopy spectra of N 

1s of nitrogen (N) doped biochar, graphitic nitrogen, pyridinic nitrogen, 
and pyrrolic nitrogen were proven on the surface of N-doped biochar (Lu 
et al., 2021; Tang et al., 2020). Then, the pristine and N-doped biochar 
surfaces with graphitic nitrogen, pyridinic nitrogen, and pyrrolic ni-
trogen were constructed. The configurations of N functional groups in 
the biochar refer to Ma’s work (Ma et al., 2019) and Qu’s work (Qu et al., 
2018a). Moreover, due to the diameter of PeCDF molecule (1.34 nm), 
the mesopores plays key role for the adsorption of PeCDF on graphene 
materials (Li et al., 2016) and carbon nanotubes (Zhou et al., 2015). N 
doped biochar contains many mesopores (Kasera et al., 2022; Liu et al., 
2023), with potential to remove PCDD/F effectively. To investigate the 
electronic properties of the N-doped biochar surface, the charge density 
of pristine and N-doped biochar is illustrated in Fig. 2. As compared with 
the pristine surface (Fig. 2(a)), graphitic N, pyridinic N, and pyrrolic N 
doping all produce higher charge density and asymmetrical charge 
distribution. Moreover, the maximum charge density of the surface is 
the biochar with pyridinic N (0.668 e/Bohr3), followed by the biochar 
with pyrrolic N atom (0.606 e/Bohr3), the biochar with graphitic N atom 
(0.564 e/Bohr3), pristine biochar (0.316 e/Bohr3). The result implies 
that N doping increases the accumulation of electrons of the N atom. 
More specifically, the charge density of the N atom is two times that of 
the carbon atom on the graphitic N-doped biochar. Nevertheless, the 
N-doped biochar presents the potential to enhance the adsorption be-
tween PeCDF and biochar. The results are in accord with the experiment 
on nitrogen-doped biochar (Wan et al., 2020). 

Moreover, to investigate the effect of N doping on the electronic 
properties, the electrostatic potential was analyzed. The changes in 
electrostatic potential can significantly influence the interaction be-
tween surface and molecules (Kong and Chen, 2013; Wheeler and 
Bloom, 2014). Fig. 2 (e)–(g) shows the electrostatic potential map of 
three N-doped biochar. Compared with the pristine surface (Fig. S3), N 
doping results in the enhancement or weakening of electrostatic po-
tential within the biochar surface. Specially, for graphitic N-doped 
biochar, the electrostatic potential of the region near N atoms enhances. 
For the pyridinic N-doped surface, the red region can be observed 
around N atoms, suggesting negative electrostatic potential. The 
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outcome further indicates that pyridinic N can donor electrons for the 
biochar surface interacting with PeCDF. With regard to the pyrrolic 
N-doped surface, the blue region can be observed around the pyrrolic 
N-doped, suggesting strong positive electrostatic potential. This result 
indicates that hydrogen and pyrrolic N atoms can accept electrons for 
the biochar surface interacting with PeCDF. The above results are in 
accord with the previous study about N-doped carbon clusters (Qu et al., 
2018b). 

3.2. PeCDF adsorption on the N-doped biochar 

For the adsorption of PeCDF on the pristine biochar, various possible 
adsorption geometries were considered, including the hexagonal ring of 
PeCDF parallel and perpendicular to the biochar surface with a chlorine 
site or oxygen site. Five stable adsorption configurations are presented 
in Fig. 1, denoted as (c), (d), (e), (f), and (g), and the adsorption energy 
of five configurations are shown in Table S2. For configuration (c), the 
two six-membered carbon rings of PeCDF are almost perpendicular to 
biochar with three Cl atoms close to the surface. The calculated Ead value 
is − 91.55 kJ mol− 1 and the interaction distance is 3.111 Å. For 
configuration (d), the two six-membered carbon rings of PeCDF are 
almost perpendicular to biochar with two Cl atoms and close to the 
surface. The calculated Ead value is − 77.98 kJ mol− 1 and the interaction 
distance is 3.461 Å. In addition, for configuration (f), the two six- 
membered carbon rings of TCDD are perpendicular to the biochar sur-
face with two H atoms and two Cl atom close to the surface. This 
structure is energetically relative unfavorable with the Ead value being 
− 88.59 kJ mol− 1. For configuration (d), the two six-membered carbon 

rings of PeCDF are perpendicular to the biochar surface with a hydrogen 
atom, two Cl atoms, and an O atom close to the surface. The adsorption 
energy between the PeCDF molecule and biochar surface is − 81.40 kJ 
mol− 1 and the interaction distance is 3.624 Å. For the most stable 
configuration (g), the adsorption energy between PeCDF and pristine 
biochar is − 150.16 kJ mol− 1, and the interaction distance is 3.593 Å. 
Therefore, the adsorption energy of PeCDF lying on biochar is signifi-
cantly higher than that of the other configuration. It is found that the 
two six-membered carbon rings of PeCDF parallel to the biochar surface 
are the strongest adsorption configuration. The high adsorption energy 
and short interaction distance for the complex of PeCDF on biochar 
surface indicate the strong physical adsorption of pristine biochar sur-
face toward PeCDF via π-π EDA interaction. The result is consistent with 
the adsorption mechanism between metal doped black phosphorene or 
nanotubes and 2,3,7,8-TCDD (Zhang et al., 2017) and adsorption 
experiment of PCDD/F on graphite (Li et al., 2016). As for the calcula-
tion without dispersion correction in previous studies (Kang, 2005), the 
adsorption energy between 2,3,7,8-TCDD and biochar ranged from 
− 28.94 kJ mol− 1 to − 38.59 kJ mol− 1. The adsorption energy between 
PeCDF and biochar surface is significantly higher with near interaction 
distance. Therefore, the van der wall interaction plays an essential role 
in the adsorption between PeCDF and biochar surface. In addition, the 
previous studies of PCDD/F adsorption on different materials focus on 
the most stable adsorption configurations for different materials (Wang 
et al., 2017b; Zhang et al., 2014, 2017). Therefore, for PeCDF on N 
doping biochar, it is reasonable to only consider the configuration of 
biochar parallel to PeCDF. 

Next, for the adsorption of PeCDF molecule on the N doped biochar, 

Fig. 1. Structure (a) and electrostatic potential (isosurface level = 0.002 e/Bohr3) (b) of 2,3,4,7,8-PeCDF molecule; optimized ball and stick models of PeCDF- 
biochar: (c) PeCDF standing on biochar with three chlorine atoms, (d) PeCDF standing on biochar with an oxygen atom, (e) PeCDF standing on biochar with two 
chlorine atoms, (f) PeCDF standing on biochar with two hydrogen atoms, (g) PeCDF lying on biochar. (The structural parameters are shown in Å). 
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the optimized physisorption complex of PeCDF on biochar surface with 
and without N doping is illustrated in Fig. 3. The adsorption energy 
between PeCDF and pristine and N doped biochar is presented in 
Table 1. For the graphitic N site adsorption, the adsorption energy in-
creases to − 151.70 kJ mol− 1 from − 150.16 kJ mol− 1 of pristine biochar. 
Moreover, the adsorption energy is − 155.19 kJ mol− 1 and -155.56 kJ 
mol− 1 for pyridinic N and pyrrolic N site adsorption, respectively. 
Though, the adsorption energy of N-doped biochar is only 1–5 kJ/mol 
lower than that of the biochar without any N atom. Due to the change of 
total energy is less than 10− 7 eV, errors caused by calculation principles 
are less than 10− 5 kJ/mol. Therefore, the change of adsorption energy is 
credible to supply that the N-doped biochar is superior to adsorbing 
PeCDF. It is found that N doping enhances the adsorption behavior of 

Fig. 2. The charge density of pristine and N-doped biochar. Biochar without any N atom (a), with graphitic N (b), with a pyridinic N (c), and with pyrrolic N atom 
(d); electrostatic potential of N-doped biochar. Biochar with graphitic N (e), with pyridinic N (f), and with pyrrolic N atoms (g), with 6% graphitic N (h) (isosurface 
level = 0.002 e/Bohr3). 

Fig. 3. Optimized physisorption complex of PeCDF on biochar surface with and without N doping. Biochar without any N atom (a), with graphitic N (b), with a 
pyridinic N (c), and with pyrrolic N atom (d). 

Table 1 
Adsorption energy between PeCDF and pristine and N doped biochar.  

Species Ead = Esurface + PeCDF-(Esurface + EPeCDF) 

Esurface + PeCDF (ev) Esurface (ev) EPeCDF (ev) Eads (kJ•mol− 1) 

Graphite − 1046.26 − 908.22 − 136.47 − 150.16 
Graphitic-N − 1040.99 − 902.94 − 136.47 − 151.70 
Pyridinic-N − 1030.74 − 892.65 − 136.47 − 155.19 
Pyrrolic-N − 1021.23 − 883.13 − 136.47 − 155.56 
Graphitic- 

6N 
− 1034.75 − 896.69 − 136.47 − 153.40  
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PeCDF on the biochar. The results are consistent with the actual 
experimental result (Zhan et al., 2021) that the higher adsorption ca-
pacity of biochar with N functional group for PCDD/F, compared with 
active carbon. In addition, the interaction distance decreased from 
3.593 Å to 3.558 Å, 3.575 Å, and 3.532 Å for graphitic N, pyridinic N, 
and pyrrolic N site adsorption, respectively. The smaller interaction 
distances imply the stronger interaction of PeCDF with N-doped biochar 
than the pristine biochar. The enhanced effect can attribute to the N 
doping increasing the charge-transfer ability of biochar to PeCDF. 
Finally, the pyrrolic N site presents the highest adsorption energy and 
shortest interaction distance among the three N-doped sites. The result 
indicates that the optimized most stable site is the pyrrolic N site. 

3.3. Electronic properties 

To understand the improved adsorption capability of the biochar 
toward PeCDF upon the N doping, the total electronic density of state 
(DOS) of the stable adsorption site is calculated. As shown in Fig. S4, the 
DOS of biochar near the Fermi level (energy = 0 eV) almost changed 
slightly after N doping. More specifically, the DOS of N-doped biochar is 
higher than that of pristine biochar in energy about − 13 eV, 5 eV. 
Furthermore, the obvious difference in biochar can be found in the total 
DOS result after the adsorption of the PeCDF molecule. The result in-
dicates a strong interaction between biochar and PeCDF molecule. As for 
PeCDF adsorped on the pyridinic N-doped biochar, the DOS peak shifts 
to the left by 1 eV. In addition, among the three N-doped adsorption 
configurations of PeCDF, the pyrrolic N-doped biochar display the 
highest peak. The result is consistent with the analysis of adsorption 
energy. 

The yellow isosurface represents the electron accumulation region 
and the cyan one represents the electron dissipation region. As shown in 
Fig. 4 (a) and (b), there were distinct charge transfers between N-doped 
biochar and 2,3,4,7,8-PeCDF molecule. Furthermore, the amount of 
charge transfer of N-doped biochar is more than that of pristine biochar. 
The results indicate that a strong interaction exists between the 
2,3,4,7,8-PeCDF molecule and N-doped biochar. As for the PeCDF- 
graphitic N-doped biochar system (Fig. 4(b)), the isosurface near N 
atoms is yellow, and far from N atoms is cyan, considering that the 
isosurface near the carbon ring of the PeCDF molecule is yellow. The 
result indicates that the electrons of biochar far from N atoms transfer to 
the region near N atoms. With respect to the PeCDF-pyridinic N-doped 
biochar system (Fig. 4(c)), the isosurface near the oxygen ring of the 
PeCDF molecule is cyan and the isosurface on the outside of the PeCDF 
molecule is yellow. The result suggests that the electrons of the oxygen 
ring of the PeCDF molecule transfer to the region near N atoms. As for 
the PeCDF-pyrrolic N-doped biochar system, the isosurface near the 
oxygen ring of the PeCDF molecule is yellow and the isosurface on the 
outside of the PeCDF molecule is cyan (Fig. 4(d)). In addition, the iso-
surface area of the oxygen ring of the PeCDF molecule is the largest 
among PeCDF-graphitic N-doped biochar, PeCDF-pyridinic N-doped 
biochar, and PeCDF-pyrrolic N-doped biochar system. Therefore, the 
strongest interaction occurs between PeCDF and pyrrolic N-doped bio-
char. In addition, to compare the adsorption pattern of N doping, the top 
view for charge density difference of PeCDF-biochar system without N 
doping, with graphitic N with a pyridinic N, and with pyrrolic N atoms is 
shown in Fig. S5. The area of electron-electron transformation of PeCDF- 
biochar system with graphitic N doping is larger than that of PeCDF- 
biochar system without N doping. Hence, compared with the charge 
density difference of the PeCDF-biochar system without N doping, 
graphitic N doping enhances the electrostatic interaction. In addition, 
the pattern of electron-electron transformation of PeCDF-biochar sys-
tems with pyridinic N doping and pyrrolic N doping is similar with that 
of PeCDF-biochar system without N doping. Therefore, pyridinic N 
doping and pyrrolic N doping enhance π-π EDA interaction. 

To quantitatively describe the electron-electron transformation from 
N doped biochar to PeCDF molecule, charge integral for (x,y) planes of 

PeCDF-biochar system without any N atom, with graphitic N, with 
pyridinic N, and with pyrrolic N atoms are shown in Fig. 4 (e)–(f). 
Compared with the charge integral (x, y) of PeCDF-pristine biochar 
system, the charge integral (x,y) enhances at z = 6 Å for graphitic N 
doping. In addition, the charge integral (x,y) significant enhances at z =
6 Å and z = 5 Å for pyridinic N doping and with pyrrolic N doping, 
respectively. Generally, the pattern of electron transformation for the 
PeCDF molecule on the graphitic-N doped biochar is different from that 
for the PeCDF molecule on the pyridinic N or pyrrolic N doped biochar. 
Specially, the charge integral (x, y) of pyridinic N doping and with 
pyrrolic N doping system is higher than that of graphitic N doping at z =
2–6 Å. 

3.4. Effect of N-doped content 

To investigate the relationship between adsorption capacity and N 
content, the biochar with higher graphitic N content doping was con-
structed. According to the numbers of previous experiments (Cheng 
et al., 2023; Huang et al., 2023; Liang et al., 2022; Lin et al., 2023; Liu 
et al., 2023), the N content in biochar most ranges from 3% to 6%. The 
pore structure of biochar can be destroyed if the N content in biochar is 
too high (>8%), resulting in the low adsorption capacity for PCDD/F. 
Hence, the design of 3% and 6% N content doping is reasonable. The 
reasons for selecting graphitic N doping to analyze the effect of N doping 
content are the following: (1) the enhancing effect of adsorption be-
tween PeCDF and graphitic N doped biochar is in accord with that be-
tween PeCDF and pyridinic or pyrrolic N doped biochar; (2) the 
homogeneity of N doping on the surface can ensure by graphitic N rather 
than pyridinic or pyrrolic N doping. As shown in Fig. 2 (h), the elec-
trostatic potential near graphitic N doping is higher than that near 
carbon atoms, and the pattern of 6% graphitic N doping is similar to that 
of 3% graphitic N doping. As the optimized PeCDF-6% graphitic N 
doped biochar is present in Fig. 5 (a), the adsorption energy is − 153.40 
kJ mol− 1 and the interaction distance is 3.516 Å. Hence, the adsorption 
energy increases by − 1.54 kJ mol− 1 and the interaction distance de-
creases by 0.042 Å. The result indicates that PeCDF can be stronger 
absorbed on 6% graphitic N doped biocharby a shorter adsorption dis-
tance. Compared to the system with 3% graphitic N doped biochar, the 
results indicate higher N content contributes to more electron trans-
formation in Fig. 5 (b). Moreover, the DOS of PeCDF on biochar surface 
with 6% N doping is shown in Fig. S6. The adsorption enhancement of 
6% N doping can be observed in the view of molecular orbital compo-
sition. As shown in Fig. 5 (d), the adsorption energy has a near-perfect 
linear relationship with N content. The coefficient of determination is 
0.999. The result indicates that higher N content contributes to higher 
adsorption capacity, similar with the adsorption of methanol adsorption 
over nitrogen-rich carbon (Ma et al., 2019). Especially, the adsorption 
energy of the PeCDF-biochar with 6% graphitic N content doping is 
smaller than that of PeCDF-biochar with 3% pyrrolic N content doping. 
The result indicates that the effect of N doping species on PeCDF 
adsorbed on the biochar is more than that of N doping content. Hence, 
the adsorption capacity of N doping biochar for PCDD/F can be 
improved by adding pyrrolic N group most efficiently. 

3.5. Effect of temperature and pressure 

To investigate the influence of temperature on the adsorption of 
PeCDF on biochar, adsorption Gibbs adsorption energy was calculated to 
present thermal vibrations. The temperature and pressure setting refers 
to the operating temperature of PCDD/F on N-doped biochar (Chen 
et al., 2020; Li et al., 2016; Zhan et al., 2021) and the operating pressure 
(Lv et al., 2021) of bag filter in industries. On the basis of Eqs (3)–(7), the 
results of Gibbs adsorption energy at different temperatures and 
different pressure are shown in Fig. 6. As shown in Fig. 6 (a), Gibbs 
adsorption energy of 2,3,4,7,8-PeCDF decreases with increasing tem-
perature, indicating an exact trend. This trend is in accord with carbon 
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Fig. 4. Charge density difference of PeCDF-biochar system without any N atom (a), with graphitic N (b), with a pyridinic N (c), and with pyrrolic N atoms (d) 
(isosurface value: 5 × 10− 5 e/Bohr3); charge integral for (x,y) plane of PeCDF-biochar system without any N atom (e), with graphitic N (f), with pyridinic N (g), and 
with pyrrolic N atoms (h). 
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dioxide over hexagonal boron nitride (Hu et al., 2021). Specially, the 
adsorption Gibbs adsorption energy of 2,3,4,7,8-PeCDF adsorbed on 
pyrrolic N doped biochar is higher than that adsorbed on the pristine 
surface, followed by pyridinic N doped biochar. The result indicates that 
the adsorption behavior of 2,3,4,7,8-PeCDF adsorbed on pyrrolic N and 
pyridinic N doped biochar results in the entropy increase of 2,3,4,7, 
8-PeCDF molecule. Therefore, overall, the 2,3,4,7,8-PeCDF molecule 
accepts electrons. In contrast to this result, the Gibbs adsorption energy 
of 2,3,4,7,8-PeCDF adsorbed on graphitic N doped biochar is lower than 
that adsorbed on a pristine surface. In addition, the Gibbs adsorption 
energy of 2,3,4,7,8-PeCDF adsorbed on 6% graphitic N doped biochar is 
significantly lower than that adsorbed on 3% graphitic N doped biochar. 
As a result, the adsorption behavior of 2,3,4,7,8-PeCDF adsorbed on 
graphitic N doped biochar results in the entropy decrease of the 2,3,4,7, 
8-PeCDF molecule. Furthermore, with more N atoms being doped in 
biochar, adsorption Gibbs free energy decreases. The result further 
proves the fact that high N doping content can enhance the adsorption of 
2,3,4,7,8-PeCDF on biochar. Specially, the Gibbs free energies of 2,3,4,7, 

8-PeCDF before and after adsorption for different temperatures were 
shown in Table S3. As the temperature increase, the Gibbs free energies 
of 2,3,4,7,8-PeCDF decrease. 

In addition, to investigate the influence of pressure on the adsorption 
of PeCDF on biochar, adsorption Gibbs free energies under different 
pressure were calculated. According to Fig. 6(b), whatever PeCDF 
molecule adsorbed on pristine, graphitic N, pyridinic N, or pyrrolic N 
doped biochar, the Gibbs adsorption energy keeps constant as the 
pressure increases from 0.25 Atm to 1.25 Atm. Pressure has been re-
ported a significant influence on chemical adsorption and mass transfer 
(Wang et al., 2019; Zhou et al., 2018). Therefore, it is reasonable that 
pressure has no effect on the physical adsorption without a mass transfer 
barrier. Specially, the Gibbs free energies of 2,3,4,7,8-PeCDF before and 
after adsorption for different pressure were shown in Table S4. As the 
pressure increase, the Gibbs free energies of 2,3,4,7,8-PeCDF increase 
whatever PeCDF molecule adsorbed on pristine, graphitic N, pyridinic 
N, or pyrrolic N doped biochar. 

Fig. 5. Optimized configuration (a); difference charge density (isosurface value: 5 × 10− 5 e/Bohr3) (b); charge integral for (x,y) plane of 2,3,4,7,8-PeCDF-6% N- 
doped biochar system (c); (d) relationship between adsorption energy and N content. 

Fig. 6. Gibbs adsorption energies of 2,3,4,7,8-PeCDF over N-doped biochar at different temperatures (a) and different pressure (b).  

S. Xiong et al.                                                                                                                                                                                                                                    



Journal of Environmental Management 344 (2023) 118611

9

4. Conclusion 

In summary, the PeCDF adsorption mechanism on biochar with 
various nitrogen-containing functional groups has been systematically 
investigated by the DFT-D3 method. The results are as follows:  

(1) PeCDF molecule prefers to be absorbed parallelly on the pristine 
and N-doped biochar and N doping promotes the PeCDF 
adsorption by enhancing π-π EDA interaction and electrostatic 
interaction.  

(2) Among various N doping biochar, pyrrolic N doping biochar 
presents the strongest interaction toward PeCDF molecule due to 
the highest adsorption energy and shortest interaction distance.  

(3) The effect of N doping species is more important than that of N 
doping content and the adsorption capacity of N doping biochar 
for PCDD/F can be improved by adding pyrrolic N group most 
efficiently.  

(4) The adsorption behavior of 2,3,4,7,8-PeCDF adsorbed on pyrrolic 
N and pyridinic N doped biochar results in the entropy increase of 
2,3,4,7,8-PeCDF molecule, entropy decrease for graphitic N 
doped biochar. 

The results reveal the PeCDF adsorption mechanism on biochar and 
guide the design of the efficient adsorption material for PCDD/F emis-
sion from industrial manufacture. 
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