文章编号:1674-7607(2023)10-1352-11

DOI:10.19805/j.cnki.jcspe.2023.10.014

基于延迟特性的 NO_x 浓度软测量与喷氨优化

林伟俊¹, 李 敏², 赵 畅¹, 崔庆伟², 梁银河², 竹小锋², 吴可泽², 杨建国¹

(1.浙江大学 能源清洁利用国家重点实验室,杭州 310027;2.浙江浙能兰溪发电有限责任公司,浙江金华 321100)

摘 要: 针对 NO_x 浓度测量延迟导致 NO_x 排放浓度波动较大的问题,为提升脱硝系统运行的稳定性,试验分析了 NO_x 浓度测量的延迟时间和锅炉关键控制参数改变后 SCR 入口 NO_x 浓度的响应时间,建立了表征锅炉运行动态特性的 SCR 入口 NO_x 浓度软测量的数据结构,进一步建立了基于 XGBoost 算法的动态工况下 SCR 入口 NO_x 浓度实时软测量模型。结果表明:SCR 入口 NO_x 质量浓度的测量延迟时间约为 1 min,软测量模型能够提前近 1 min 得到实际 NO_x 质量浓度,软测量曲线与实际曲线具有理想的跟随性和准确性;软测量模型在 660 MW 机组上投入应用后,喷氨流量曲线和 NO_x 排放质量浓度曲线的稳定性得到显著提升。

关键词: SCR 脱硝; NO_x 浓度; 软测量; 延迟时间; 动态工况; 喷氨优化 **中图分类号:** X511 **文献标志码:** A **学科分类号:** 610. 30

NO_x Concentration Soft Measurement and Ammonia Injection Optimization Based on Delay Features

LIN Weijun¹, LI Min², ZHAO Chang¹, CUI Qingwei², LIANG Yinhe², ZHU Xiao feng², WU Keze², YANG Jianguo¹

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
 Zhejiang Zheneng Lanxi Power Generation Co., Ltd., Jinhua 321100, Zhejiang Province, China)

Abstract: The delay of NO_x concentration measurement may result in large fluctuations of NO_x emission concentration. In order to improve the operation stability of the denitration system, the delay time of NO_x concentration measurement and the response time of SCR inlet NO_x concentration after changes of boiler key control parameters were experimentally analyzed. The data structure of SCR inlet NO_x concentration soft measurement was established to characterize the dynamic characteristics of boiler operation, and then the real-time soft measurement model of SCR inlet NO_x concentration during dynamic processes based on XGBoost algorithm was developed. Results show that the measurement delay time of the NO_x concentration at the SCR inlet is about 1 min, and the soft measurement model can obtain the actual NO_x concentration nearly 1 min in advance. The soft measurement curve can follow the actual curve with high accuracy. After the soft measurement model was applied on a 660 MW unit, the stability of the ammonia injection flow curve and NO_x emission concentration curve was significantly improved.

作者简介:林伟俊(1998一),男,福建莆田人,硕士研究生,研究方向为锅炉燃烧和排放控制智能化。

收稿日期:2022-09-13 修订日期:2022-11-21

基金项目:中央高校基本科研业务费专项资金资助项目(2022ZFJH04);浙江省能源集团科技资助项目(ZNKJ-2019-027)

杨建国(通信作者),男,副研究员,博士,电话(Tel.):0571-87951322;E-mail:yjg@zju.edu.cn。

Key words: SCR denitration; NO_x concentration; soft measurement; delay time; dynamic process; ammonia injection optimization

国内大多数电站锅炉采用洗择性催化还原 (SCR)脱硝系统来控制 NO_x 排放^[1]。电厂通常采 用"PID+前馈+反馈"的控制方式^[2],而SCR入口 NO_x浓度值作为前馈信号,不但影响 NO_x 排放浓 度的定值控制,还与脱硝效率高低和系统能耗大小 等紧密相关,因此实现 NO_x 生成浓度的及时准确测 量至关重要。目前,SCR入口NO_x浓度的测量一 般采用烟气排放连续监测系统(CEMS),为了保证 精密仪器的稳定工作,需设置较长的采样系统管线, 导致 NO_x 的测量值存在一定的延迟时间^[3-4]。翁卫 国等^[5]曾采用理论计算方法得到 CEMS 的测量延 迟时间为 60 s。在实际生产中, NO_x 生成浓度随锅 炉工况的改变而变化,若测量的延迟时间较长,则会 导致前馈不及时,系统喷氨无法及时准确地跟随 NO_x 生成浓度的变化,NO_x 排放浓度便容易出现瞬 时波动。为了满足环保考核的要求,电厂往往设置 远低于 NO_x 排放标准的目标值,既影响经济性又会 使氨的逃逸率增加,对机组造成危害^[6]。为了解决 时延问题,目前主流的方法有2种:一是采取改进控 制方式的手段,如建立自适应控制器^[7]解决系统大 滞后的特性,但是系统的控制精度及动态品质难以 保证;二是采取软测量方法,通过构建数学模型,对 NO_x 生成浓度进行预测,由于软测量技术成本低廉 和维护方便,因此其在工业生产过程中得到广泛 应用。

得益于机器深度学习的发展,NO_x 生成浓度的 软测量技术也趋于成熟,国内外学者相继提出了不 同的软测量模型,如基于简化 T-S(Takagi-Sgeno) 模糊模型的在线辨识方法^[8]、最小二乘支持向量机 (least squares support vector machine, LS-SVM) NO_x 预测模型^[9]、基于燃烧火焰图像深层特征的支 持向量机(SVM)预测模型^[10]等。以上模型的出现 固然为软测量技术的发展带来了诸多可能性,但大 部分研究均基于稳态工况建模,然而在锅炉实际运 行过程中,工况变化往往是常态,稳态模型在实际生 产中很难实现在线应用。为解决这一难点,赵征 等[11]加入了辅助变量的过去时刻参数来进行动态 建模,但其只考虑了辅助参数的延迟时间,仅提升了 参数的工况对应准确度,仍然不足以表征锅炉的整 个动态过程。锅炉是一个多变量惯性系统,如何使 锅炉的动态特性在软测量模型的输入变量中得到有

效表征,是对 NO_x 生成浓度进行动态建模的关键。 由于锅炉动态运行具有变量关系复杂、历史数据量 庞大和噪声严重等特点^[12],动态建模下的数据结构 特征必然为高维耦合,如何选取合适的算法实现大 数据建模成为 NO_x 生成浓度软测量技术的另一难 点。李元浩^[13]首次提出利用极限梯度树提升(extreme gradient boosting,XGBoost)对锅炉运行数据 进行动态建模,该算法不仅加入了正则化项防止过 拟合,还通过并行提升算法速度,契合样本数据的特 征,目前已在多个领域^[14-16]得到有效应用。

笔者针对一台 660 MW 超临界机组,通过试验 得到 CEMS 测量的延迟时间及锅炉关键控制参数 调整的 NO_x 生成响应时间,建立表征锅炉动态特性 和 NO_x 生成浓度基准的数据结构,通过正交试验扩 展影响 NO_x 生成浓度的锅炉调控设备的最大调节 范围,从而建立适应锅炉动态运行工况的实时燃烧 NO_x 生成浓度软测量模型,并应用于脱硝系统喷氨 优化控制。

1 试验部分

1.1 试验对象

选用某电厂 600 MW 超临界机组作为研究对 象,其型号为 B& WB-1903/25.40-M。锅炉为超临 界参数、螺旋炉膛、一次中间再热、平衡通风、固态排 渣、全钢构架、露天布置的 II 型锅炉。锅炉配有带循 环泵的内置式启动系统,采用中速磨煤机冷一次风 机正压直吹式制粉系统,前后墙对冲燃烧方式,配置 B& W 公司最新研制的 DRB-4Z 超低 NO_x 双调风 旋流燃烧器及 NO_x(即 OFA 燃尽风)喷口。相关设 计参数见表 1。

1.2 CEMS 测量延迟时间

1.2.1 试验目的

结合烟气分析仪的使用,分别得到其与 CEMS 测量的延迟时间及自身的测量延迟时间,从而计算 得到 CEMS 的测量延迟时间,基于此对建模数据进 行匹配,进而真正意义上实现对 SCR 入口 NO_x 真 实值的预测,以解决 CEMS 测量延迟所带来的前馈 不及时的问题。

1.2.2 试验过程

具体试验安排为调整工况使 NO_x 浓度发生变化,并在此过程中,使用烟气分析仪对 SCR 入口烟

第 43 卷

表 1 锅炉主要设计参数 Tab. 1 Main design parameters of the boiler

参数	锅炉最大出力工况(B-MCR) 调门全开(VWO)
锅炉最大连续蒸发量/(t•h ⁻¹)	1 903
过热器出口蒸汽压力/MPa	25.40
过热器出口蒸汽温度/℃	571
再热蒸汽质量流量/(t•h ⁻¹)	1 551.3
再热器进口蒸汽压力/MPa	4.716
再热器出口蒸汽压力/MPa	4.526
再热器进口蒸汽温度/℃	324
再热器出口蒸汽温度/℃	569
省煤器进口给水温度/℃	289
过热器减温水温度/℃	289
锅炉计算热效率/%	94.06

气成分进行连续测量,得到 NO_x 浓度实测曲线(简称实测曲线),将实测曲线与同时段 CEMS 的 NO_x 浓度测量曲线(简称 CEMS 曲线)进行斯皮尔曼相 关性系数(Spearman rank-order correlation coefficient,SR)相关性分析,得到 CEMS 测量与烟气分析 仪测量之间的延迟时间 t_{dl} 。

将烟气分析仪及其测量管路与 NO 标气瓶连接,管路系统及气体流量与现场试验一致,打开标气 瓶阀门直至 NO 浓度基本恒定,得到烟气分析仪测 量系统的测量延迟时间 t_{d2}。

t_{d1}、t_{d2}之和即为 CEMS 测量延迟时间 t_d。

$$t_{\rm d} = t_{\rm d1} + t_{\rm d2} \tag{1}$$

1.2.3 SR 相关性分析

采用 SR 相关性系数法^[17] 对实测曲线和 CEMS 曲线进行相关性分析。相关性系数 ρ_s 的计算公式 如式(2)所示。

$$\rho_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$
(2)

式中: *ρ*_s 为斯皮尔曼相关性系数; *n* 为数据的数量; *d*_i 为 2 个数据次序的差值。

$$d_i = X_i - Y_i \tag{3}$$

式中:X_i和Y_i分别为2组数据按照相同的升降序 排列后,第*i*个数据在原始数据中的位置。

假定 CEMS 测量值与烟气分析仪测量值之间 的延迟时间为 $t_s(t_s=0,1,2,\dots,k,k)$ 为预估最大延 迟时间),将 CEMS 曲线前移 t_s 时间,迭代计算得到 一系列相关性系数值 ρ_s ,绘制 ρ_s-t_s 曲线,曲线峰值 对应的 t_s 值即为 t_{d1} 。

1.2.4 试验结果

烟气分析仪测量延迟时间共重复进行了 3 次试验,结果分别为 18 s、24 s 和 22 s,平均测量延迟时间 *t*_{a2}为 21 s。

在锅炉上共进行了 30 组 CEMS 测量延迟时间 试验,得到 CEMS 测量延迟时间 t_d,见表 2。

表 2 SCR 入口 NO_x 浓度 CEMS 测量延迟时间 Tab. 2 Delay time of NO_x concentration at SCR inlet by CEMS

		 A 侧				B 侧				
参数	600 MW	500 MW	330 MW	AGC	600 MW	500 MW	330 MW	AGC		
数据组数	2	5	5	2	4	7	4	1		
最小延迟时间 /s	56	56	56	56	46	41	41	41		
最大延迟时间 /s	66	81	81	71	56	66	56	41		
平均延迟时间 /s	61	63	69	64	51	52	49	41		
单侧平均延迟时间/s		64				51				

由表 2 可知, CEMS 测量延迟时间与机组负荷 没有呈现出显著的规律性差异, A、B 两侧的平均 CEMS 测量延迟时间分别为 64 s 和 51 s。为简化 后续建模及应用,将 A、B 两侧的 CEMS 测量延迟 时间取平均值并近似为 1 min。

1.3 NO_x 生成的响应时间

锅炉的调控与燃烧是惯性过程,从工况调整到 NO_x浓度变化往往有一定的响应时间^[18]。锅炉给 煤量(负荷)变化和风量调整等对 NO_x 的生成有显 著影响^[19],它们的调整过程虽然较快(秒级),但进 入炉膛后存在混合、燃烧及温度变化过程,尤其是给 煤量变化仍需经历磨煤机的磨制过程,NO_x的生成 存在一定的响应时间,若该响应时间较长,则在锅炉 动态运行过程中不容忽略,故不能用同一时刻的运 行数据来表征动态运行状态下的 NO_x 生成浓度。 为有效表征锅炉的动态运行过程,以风煤调节的实 际 NO_x 生成响应时间为基准,在同一时刻数据的基 础上,加入过去时刻的关键参数数据,用以表征运行 NO_x生成的风煤变化过程及其幅度。

影响 NO_x 生成的主要因素是氧量和温度^[20], 在锅炉实际运行中,给煤量的变化总是伴随着风量 的变化和氧量的波动,难以独立界定给煤量变化对 NO_x 生成的影响,因此,将给煤量和风量的调整合 并定义为风煤比(即总风量与给煤量的质量比)进行 总体性分析。

同样,采用 SR 相关性系数法来分析风煤比变 化时的 NO_x 生成响应时间,NO_x 浓度已根据测量 延迟时间完成修正,以图 1 所示的某工况为例,图中 NO_x 生成质量浓度曲线明显滞后于风煤比的变化。 由 SR 相关性系数分析得到图 2 所示曲线,由图 2 可知延迟时间为 150 s,将 NO_x 生成质量浓度曲线 前移 150 s 后 2 条曲线趋势基本吻合。

图 1 NO_x 生成质量浓度与风煤比的相关性 Fig. 1 Relation of NO_x concentration and air-coal ratio

图 2 不同前移时间的相关性系数 Fig. 2 Correlation coefficient of different forward time

从锅炉运行历史数据中选取基本均匀分布于 32%~100%负荷区间的共 51 组 NO_x 生成质量浓 度存在明显变化的数据,分析得到各自的生成响应 时间,结果见图 3。由图 3 可知,风煤比变化时 NO_x 生成响应时间的平均值与中位值均在 175 s 左右, 大部分数据处于 105~235 s 的区间内,总体范围约 为 1~5 min。

2 NO_x 质量浓度软测量模型构建

2.1 数据结构构建

常规的 NO_x 生成质量浓度软测量模型通常建 立在稳定工况基础上,为了提高软测量模型的在线 实时可用性,亟需充分考虑 NO_x 浓度测量的延迟时 间和动态工况下的 NO_x 生成响应时间。软测量作 为1种数学计算过程,其关键点在于建模数据的准 确性、全面性和数据结构的有效性。

(1) NO_x 浓度测量的时间修正

根据 CEMS 测量延迟时间的试验结果,将 CEMS 所测量的 NO_x、O₂、CO 浓度前移 1 min。

(2) 当前时刻输入参数构建

当前时刻输入参数主要选取影响 NO_x 生成质 量浓度的工况参数。煤粉细度对燃烧进程及 NO_r 生成有重要影响,而煤粉细度取决于磨煤机的投运 及运行状态,选取6台磨煤机各自的给煤量、一次风 量、出口风粉混合物温度及分离器挡板开度共24个 参数作为表征。机组的负载状况同样影响燃烧整体 进程,选取给水流量和供热流量2个参数作为机组 负载状况的表征。配风方式与风量大小对 NO_x 生 成质量浓度有直接影响,选取前后墙各3层共36个 燃烧器的中心风门开度、套筒风门开度(其中中心风 门采取均等配风方式,每层燃烧器只取1个作为输 人变量,套筒风门采取碗式配风方式,每层燃烧器只 取3个作为输入变量)与前后墙各8个燃尽风喷口 的套筒风门开度、中心风门开度及燃尽风量、总风量 共58个参数作为配风方式和风量大小的表征。炉 膛火焰的中心位置在一定程度上反映了炉膛的燃烧 情况,选取过热器的减温水总流量和再热器的减温 水总流量共2个参数作为炉膛火焰中心位置的表 征。SCR入口处的氧量也是燃烧情况的重要表征 之一,而氧量的测量值同样具有约1 min 的延迟时

间,故需进行数据匹配得到氧量的真实值作为输入 参数。

综上,共选取 87 个影响 NO_x 生成质量浓度的 参数的当前时刻值作为输入变量。

(3) 表征动态工况的输入参数构建

NO_x的生成主要受风、煤调整的影响,包括给煤量,磨煤机投运方式、风量及其配置,锅炉负荷等。 NO_x的生成还存在约1~5 min 的响应时间,鉴于 响应时间较长,NO_x的生成具有不容忽略的惯性特征,锅炉动态运行状态无法根据稳态工况下的数据 集进行表征,因此在选择当前时刻参数作为输入变 量的同时,将风、煤的过去时刻参数加入输入参数 中,以表征影响 NO_x 生成的关键变量的变化及其变 化幅度,进而表征锅炉运行的动态工况。

受磨煤机运行特性的影响,煤调整的响应时间 滞后于风的调整,因此选择 1 min、3 min、5 min 前 时刻的磨煤机给煤量数据对煤的变化进行表征;选 择 1 min、2 min 前时刻的磨煤机一次风量、总风量 和燃尽风量数据对风的变化进行表征;选择 1 min、 2 min 前时刻的给水流量数据间接对炉膛温度的变 化进行表征。

(4) NO_x 生成质量浓度基准值的表征

不同锅炉的 NO_x 生成质量浓度的基准值存在 一定差异,锅炉某些设备的变化(改造、维护等)也会 影响 NO_x 生成质量浓度。此外,煤种的切换、环境 的变化等都有可能影响 NO_x 的生成质量浓度,然而 环境变化属于缓变过程,煤种切换受漏斗形煤仓流 动特性的影响,原煤实际进入磨煤机也为界限不分 明的缓变过程。因此,将上述特性综合融入到 NO_x 生成质量浓度基准值中。选择 1 min 前的 SCR 入 口 NO_x 质量浓度(即 CEMS 实测的当前 SCR 入口 NO_x 质量浓度)作为输入变量。此设计的最大益处 在于使软测量的 NO_x 生成质量浓度在数值上始终 保持在真实值基准,提升软测量模型的可用性。

(5) 输出参数

输出参数为经测量延迟时间修正后的 SCR 入口 NO_x 质量浓度,即1 min 后的 CEMS 测量值。

2.2 建模与优化算法

考虑到本文的建模具有高维度和大数据量的特征,初步筛选认为 XGBoost^[21]、梯度提升决策树 (gradient boosting decision tree, GBDT)^[22]、分布 式梯度提升算法(light gradient boosting machine, LightGBM)^[23]、随机森林(random forest, RF)^[24]能 较好地实现软测量效果,故选取该4种建模算法进

行对比优选。XGBoost、GBDT、LightGBM 都属于 boosting 框架,通过拟合残差的方式,不断更迭弱学 习器对数据集实现高精度的软测量。RF 属于 bagging 框架,使用组合多个弱分类器的方式提高模型 的泛化性能。

考虑到所选取建模算法的超参数均较少,选用 在低维空间表现优秀的贝叶斯优化(Bayesian optimization,BO)算法对其进行优化。BO 算法是一种 使用贝叶斯定理来指导搜索以找到目标函数极值的 方法^[25],将已迭代的参数信息作为先验,找到下一 个评估位置,从而达到减少搜索时间、提升算法效率 的目的。

2.3 数据集

训练集为从分布式控制系统(distributed control system, DCS)导出的所需要的历史运行数据, 时间间隔为1 min。历史运行数据包含了自动发电 控制(automatic generation control, AGC)运行下的 全负荷范围(240~665 MW)工况、正交试验的稳态 工况及其调节过程的数据。

正交试验的设计目的是为了训练数据集能够尽可能覆盖全工况,从而实现模型的全工况预测。在 330 MW、500 MW 和 660 MW 3 个负荷段下,分别 对燃烧器中心风门配风方式、燃烧器套筒风门配风 方式、燃尽风套筒风门配风方式、磨煤机分离器挡板 开度、风煤比、燃尽风率和二次风量等参数进行正交 工况设计,结果见表 3~表 6。

测试集为从 DCS 系统中导出的训练集时间段 外的 AGC 运行下的历史运行数据,时间间隔为5 s。 训练集和测试集的数据概况见表 7。

2.4 评价指标

评价指标采用均方根误差(R_{MSE})、平均绝对误差(M_{AE})、平均绝对百分比误差(M_{APE})和决定系数(R²),其计算公式见式(4)~式(7)。

$$R_{\rm MSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2}$$
(4)

$$M_{\rm AE} = \frac{1}{n} \sum_{i=1}^{n} |(y_i - \hat{y}_i)|$$
(5)

$$M_{\text{APE}} = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$
(6)

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$
(7)

式中: y_i 为实际值; \hat{y}_i 为软测量值; \bar{y}_i 为实际值的平均值。

			140.0 010	nogonar enermar	test conditions			
编号	锅炉负荷/ MW	燃烧器中心 风门配风方式	燃烧器套筒 风门配风方式	OFA 套筒 风门配风方式	磨煤机分离器 挡板开度/%	风煤比	燃尽 风率/%	二次风量 偏置/%
1	660	均等一	均等一	均等一	40	1.9	20	0
2	660	均等一	均等一	碗式一	50	2.0	35	-10
3	660	均等一	均等一	碗式二	60	2.1	27	+10
4	660	均等二	碗式二	均等一	50	2.1	20	+10
5	660	均等二	碗式二	碗式一	60	1.9	35	0
6	660	均等二	碗式二	碗式二	40	2.0	27	-10
7	660	均等三	碗式一	均等一	60	2.0	20	-10
8	660	均等三	碗式一	碗式一	40	2.1	35	+10
9	660	均等三	碗式一	碗式二	50	1.9	27	0
10	500	均等一	碗式二	均等一	60	2.0	35	+10
11	500	均等一	碗式二	碗式一	40	2.1	27	0
12	500	均等一	碗式二	碗式二	50	1.9	20	-10
13	500	均等二	碗式一	均等一	40	1.9	35	-10
14	500	均等二	碗式一	碗式一	50	2.0	27	+10
15	500	均等二	碗式一	碗式二	60	2.1	20	0
16	500	均等三	均等一	均等一	50	2.1	35	0
17	500	均等三	均等一	碗式一	60	1.9	27	-10
18	500	均等三	均等一	碗式二	40	2.0	20	+10
19	330	均等一	碗式一	均等一	50	2.1	27	-10
20	330	均等一	碗式一	碗式一	60	1.9	20	+10
21	330	均等一	碗式一	碗式二	40	2.0	35	0
22	330	均等二	均等一	均等一	60	2.0	27	0
23	330	均等二	均等一	碗式一	40	2.1	20	-10
24	330	均等二	均等一	碗式二	50	1.9	35	+10
25	330	均等三	碗式二	均等一	40	1.9	27	+10
26	330	均等三	碗式二	碗式一	50	2.0	20	0
27	330	均等三	碗式二	碗式二	60	2.1	35	-10

表 3 正交热态试验工况 Tab. 3 Orthogonal thermal test conditions

表 4 燃尽风套筒风门开度

		Tab. 4	Damper oper	nings of the bu	rnout air sleev	ve damper		单位:%
配风方式	OFA1	OFA2	OFA3	OFA4	OFA5	OFA6	OFA7	OFA8
均等一	100	100	100	100	100	100	100	100
碗式一	100	90	80	70	70	80	90	100
碗式二	100	80	65	50	50	65	80	100

表 5 燃烧器套筒风门开度

_

Tab. 5 Damper openings of the burner sleeve damper

表 6 燃烧器中心风门开度

Tab.	5 Dam	per open	ings of th	ne burner	sleeve da	mper	Tab. 6	Dam	per openi	ings of th	e burner	center da	amper
						单位:%							单位:%
配风方式	1号风门	2 号风门	3 号风门	4 号风门	5号风门	6 号风门	配风方式 1	号风门	2 号风门	3 号风门	4 号风门	5 号风门	6 号风门
均等一	100	100	100	100	100	100	均等一	100	100	100	100	100	100
碗式一	100	85	70	70	85	100	均等二	60	60	60	60	60	60
碗式二	100	70	40	40	70	100	均等三	20	20	20	20	20	20

Tab. 7 Overview	of datasets	
参数	训练集	测试集
时间间隔/s	60	5
数据点数量	24 475	3 500
工况时长/min	24 474	292
最高发电负荷/MW	665.28	635.10
最低发电负荷/MW	240.33	430.97
最高 NO _x 质量浓度/(mg • m ⁻³)	596.00	490.27
最低 NO _x 质量浓度/(mg•m ⁻³)	186.57	339.08

表 7

数据集概况

3 结果分析与应用

3.1 动态工况的表征效果分析

为同时验证所提出的动态工况表征的有效性与 不同算法的适用性,分别构建有、无动态工况表征参 数和 NO_x 生成质量浓度基准值表征参数的 2 种数 据集,分别简称为 D1 和 D2,2 种数据集均已进行 NO_x 生成质量浓度测量延迟时间修正,经过 D1 和 D2 训练的模型分别简称为动态模型与稳态模型。 采用 XGBoost、GBDT、LightGBM 和 RF 算法分别对 2 种数据集进行建模,测试集计算结果见图 4 和表 8。

图 4 不同软测量模型的测试结果

Fig. 4 Test results of different soft measurement models

	衣ð	个回软测	重快空	ľΞ Ì	能站朱	
Tab. 8	Soft m	easurement	results	of	different	models

算法	数据集	延迟时间/s	最大相关度
NOD	D1	10	0.993
AGBoost	D2	20	0.958
0000	D1	15	0.980
GBD1	D2	50	0.988
	D1	15	0.974
LightGBM	D2	45	0.966
55	D1	20	0.997
KF	D2	40	0.920

由图 4 可知,相较稳态模型,动态模型得到的软

测量结果对 NO_x 生成质量浓度真实值的跟随性更 好。即使数据集均已进行了 NO_x 生成质量浓度测 量延迟时间修正,各稳态模型的软测量值曲线与真 实值曲线相比仍然有一段明显的滞后时间,且跟随 性较差。动态模型对延迟时间综合改善程度最佳的 是 XGBoost 算法,延迟时间仅为 10 s,最大相关度 (延迟时间修正后的 SR 相关系数)高达 0. 993,而相 同算法下,稳态模型的性能表现均不如动态模型。 除 GBDT 算法外,其他算法均是动态模型的最大相 关度最高,即动态模型的精度更高。

3.2 不同算法的建模结果分析

为验证模型的泛化性能与精度,分别对基于

D1、D2 数据集训练的 XGBoost、GBDT、LightGBM 和 RF 模型的软测量结果进行多项误差指标分析。 为作图方便,将 XGBoost 简写为 XGB,将 LightG-BM 简写为 LGB,结果如图 5 和图 6 所示。其中, 图 5(f)和图 6(f)中 ">0.5%"表示软测量值与 CEMS 测量值之间相对误差的绝对值>0.5%的数 据点数占测试集总数据点数的百分比,">1%"和 ">2%"的解释类似。

测试集是一段同时包含增减波动的长时数据 集,综合图 4 和图 5 可知,在数据集 D1 训练下,XG-Boost 算法模型相较其他模型明显表现出更佳的软 测量效果,各项误差指标均达到最小,除在 2 处曲线 急剧变化的位置存在短时偏差以外,其余时刻的软 测量值曲线与 NO_x 真实值曲线几乎完全一致,软测 量延迟时间由 CEMS 测量的 60 s 减至 10 s。GB-DT 与 LightGBM 算法模型的软测量延迟时间均为 15 s,但各项误差均较大,模型的精度偏低。RF 算 法模型虽然也呈现出良好的精度,多项指标接近 XGBoost 算法模型,但在延迟时间方面的改善效果 最差,综合效果仍然不够理想。上述分析表明,XG-Boost 算法模型在 D1 数据集训练下具有最佳的软 测量精度。

综合图 5 和图 6 可知,同一算法下,采用数据集 D2 训练而成的模型的 R_{MSE}、M_{AE}、M_{APE}均显著增大, 且 R² 的值均低于 0. 90,其中 RF 算法模型的 R² 更 是降至 0. 72 以下,模型的综合性能较差。上述结果 进一步验证了加入动态表征参数的数据集对模型精 度改善是有效的。

3.3 软测量模型的应用与效果

根据对比分析结果,采用 XGBoost 算法模型作 为 SCR 入口 NO_x 质量浓度软测量模型,将软测量 模型布置在外部服务器与 DCS 系统进行实时数据 交互,以实现 SCR 脱硝系统喷氨优化。在 DCS 喷 氨控制逻辑上,将软测量值与 CEMS 测量值的差值 作为 SCR 喷氨前馈的偏置值,采用偏置值模式一方 面减少原喷氨控制逻辑的改动量,另一方面有利于 简化喷氨优化系统的启停模式并保证运行安全性。

喷氨优化在 660 MW 超临界机组上投入了应 用,选取投运前后各 4 天的数据集对应用效果进行 检验,时间跨度分别为 2021-12-02—2021-12-06 与 2021-12-09—2021-12-13(间隔的 3 天为调试时间), 其中采集时间间隔为 10 s。图 7 和图 8 分别为投运 前后喷氨质量流量曲线。图 9 和图 10 分别为投运 前后的烟囱总排口 NO_x 排放质量浓度曲线。

Fig. 7 Curve of ammonia injection flow before application

结合图 7 和图 8 可知,投运后喷氨质量流量曲 线上的"毛刺"现象显著减少,流量波动的幅度呈现 更为明显的减小趋势,表明喷氨阀门的动作更加 平稳。

结合图 9 和图 10 可知, NO_x 排放质量浓度曲 线总体变化趋势与喷氨质量流量曲线基本一致。在 喷氨优化前的 4 天里 NO_x 排放质量浓度波动幅度 超过 60 mg/m³ 的情况共有 5 次,振动幅度最大时 接近 100 mg/m³。在喷氨优化后的 4 天里,NO_x 排 放质量浓度波动幅度均未超过 60 mg/m³,较投运前 波动幅度显著降低。值得注意的是,除了大幅的"毛 刺"外,小幅波动的幅度更是得到明显改善,曲线表 现为更加"收拢",表明喷氨优化具有明显效果。

4 结 论

(1) 脱硝系统 CEMS 测量延迟时间约为 1 min,锅炉风、煤调节时 NO_x 生成的响应时间总体范 围约为 1~5 min,以此为依据,对 CEMS 测量的 NO_x 质量浓度进行时间修正,并建立了通过前一或 多个时刻的运行数据来表征锅炉动态工况的软测量 模型数据结构。

(2)通过锅炉燃烧调整正交试验,获得了影响 NO_x生成质量浓度的关键调控设备的全可调范围 运行数据,结合常态 AGC 动态工况下的运行数据, 构成了更为全面的历史数据。

(3) 将 BO 优化算法和 XGBoost 等多种建模算 法相结合,建立了 NO_x 生成质量浓度软测量模型, 对比分析得出动态工况表征的软测量模型具有理想 的跟随性和准确性,且 XGBoost 软测量模型具有更 优的综合性能。

(4) 将 XGBoost 软测量模型应用于某 660 MW

超临界机组,投运前后数天的数据对比表明,喷氨质 量流量曲线和 NO_x 排放质量浓度曲线中大幅的"毛 刺"现象显著减少,小幅波动的幅度更是得到明显改 善,曲线更加"收拢",可以有效提升脱硝系统运行稳 定性和锅炉运行安全性。

参考文献:

- [1] XIE Peiran, GAO Mingming, ZHANG Hongfu, et al. Dynamic modeling for NO_x emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network[J]. Energy, 2020, 190: 116482.
- [2] 李子尚,朱仁涵,杜振. SCR 脱硝系统精准喷氨优化 技术分析[J]. 发电技术, 2021, 42(5): 630-636.
 LI Zishang, ZHU Renhan, DU Zhen. Analysis on the optimization technology of precise ammonia injection in SCR denitration system[J]. Power Generation Technology, 2021, 42(5): 630-636.
- [3] 唐振浩,柴向颖,曹生现,等.考虑时延特征的燃煤 锅炉 NO_x 排放深度学习建模[J].中国电机工程学报,2020,40(20):6633-6643.
 TANG Zhenhao, CHAI Xiangying, CAO Shengxian, et al. Deep learning modeling for the NO_x emissions of coal-fired boiler considering time-delay characteris-

tics[J]. Proceedings of the CSEE, 2020, 40(20): 6633-6643.

- [4] 唐振浩,王世魁,曹生现,等.基于混合数据驱动算法的 SCR 氮氧化物排放量动态预测模型[J].中国电机工程学报,2022,42(9):3295-3306.
 TANG Zhenhao, WANG Shikui, CAO Shengxian, et al. Dynamic prediction model for NO_x emission of SCR system based on hybrid data-driven algorithms
 [J]. Proceedings of the CSEE, 2022, 42 (9): 3295-3306.
- [5] 翁卫国,刘博文,郭一杉,等. 基于人口 NO₂ 浓度软 测量的脱硝系统先进控制研究[J]. 锅炉制造, 2019 (5): 17-22.
 WENG Weiguo, LIU Bowen, GUO Yishan, et al. Model predictive control utilizing gas soft-sensors on SCR denitration system in thermoelectric unit[J]. Boiler Manufacturing, 2019(5): 17-22.
- [6] 王乐乐,孔凡海,何金亮,等.超低排放形势下 SCR 脱硝系统运行存在问题与对策[J]. 热力发电,2016,45(12):19-24.
 WANG Lele, KONG Fanhai, HE Jinliang, et al. Difficulties and countermeasures of SCR denitration system operation in ultra low emission situation[J]. Thermal Power Generation, 2016, 45(12): 19-24.
- [7] BEKIARIS-LIBERIS N, KRSTIC M. Stabilization of

linear strict-feedback systems with delayed integrators[J]. Automatica, 2010, 46(11): 1902-1910.

- ZHAO Wenjie, GUO Baohui, CHU Fuchang, et al.
 Prediction of NO_x emission of a power plant boiler based on adaptive simplified T-S model[J]. Filomat, 2018, 32(5): 1629-1638.
- [9] YANG Tingting, MA Kangfeng, LÜ You, et al. Real-time dynamic prediction model of NO_x emission of coal-fired boilers under variable load conditions[J]. Fuel, 2020, 274: 117811.
- [10] 余印振, 韩哲哲, 许传龙. 基于深度卷积神经网络和 支持向量机的 NO_x 浓度预测[J]. 中国电机工程学 报, 2022, 42(1): 238-247.
 YU Yinzhen, HAN Zhezhe, XU Chuanlong. NO_x concentration prediction based on deep convolution neural network and support vector machine[J]. Proceedings of the CSEE, 2022, 42(1): 238-247.
- [11] 赵征,李悦宁,袁洪. 燃煤机组 NO_x 生成量动态软测量模型[J].动力工程学报,2020,40(7): 523-529.
 ZHAO Zheng, LI Yuening, YUAN Hong. Dynamic model for soft sensing of NO_x generation in coal-fired units[J]. Journal of Chinese Society of Power Engineering, 2020, 40(7): 523-529.
- [12] RAHAT AAM, WANG Chunlin, EVERSON R M, et al. Data-driven multi-objective optimisation of coalfired boiler combustion systems[J]. Applied Energy, 2018, 229: 446-458.
- [13] 李元浩. 基于神经网络的电站锅炉 NO_x 排放预测方 法研究[D]. 武汉: 华中科技大学, 2019.
- [14] ZHENG Huiting, YUAN Jiabin, CHEN Long. Short-term load forecasting using EMD-LSTM neural networks with a XGBoost algorithm for feature importance evaluation [J]. Energies, 2017, 10 (8): 1168.
- [15] 肖祥武,李志金,舒畅,等.基于信息物理融合和 XGBoost-MPGA 算法的燃煤电厂脱硫系统运行优化
 [J].中国电机工程学报,2022,42(14):5202-5211.
 XIAO Xiangwu, LI Zhijin, SHU Chang, et al. Operation optimization of flue gas desulfurization system in coal-fired power plant based on cyber-physical fusion and XGBoost-MPGA algorithm[J]. Proceedings of the CSEE, 2022, 42(14): 5202-5211.
- [16] DONG Yuanbo, MAO Dajun, ZHANG Mingming. Research on optimization and adjustment of gas turbine combustion based on XGBoost and NSGA-II
 [C]//6th International Conference on Power and Renewable Energy. Shanghai: IEEE, 2021; 1512-1518.
- [17] MAY J O, LOONEY S W. Sample size charts for

Spearman and Kendall coefficients[J]. Journal of Biometrics & Biostatistics, 2020, 11(6): 1-7.

 [18] 孙灵芳,任訴,郎坤,等. 600 MW 锅炉双尺度低氮 改造后的燃烧特性及其机理分析[J]. 动力工程学 报,2016,36(7):505-512.
 SUN Lingfang, REN He, LANG Kun, et al. Mech-

anism analysis on combustion characteristics of a 600 MW boiler retrofitted with dual-scale low nitrogen technology[J]. Journal of Chinese Society of Power Engineering, 2016, 36(7): 505-512.

- [19] 谭鹏. 电站锅炉混煤低 NO_x 燃烧建模与运行优化研 究[D]. 武汉:华中科技大学, 2017.
- [20] 王学栋, 栾涛, 程林, 等. 锅炉燃烧调整对 NO_x 排放 和锅炉效率影响的试验研究[J]. 动力工程, 2008, 28(1): 19-23.

WANG Xuedong, LUAN Tao, CHENG Lin, et al. Experimental study of the effect of boiler combustion control on NO_x emission and boiler efficiency [J]. Journal of Power Engineering, 2008, 28(1): 19–23.

[21] CHEN Tianqi, GUESTRIN C. XGBoost: a scalable tree boosting system [C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge

(上接第1351页)

- [19] GLARBORG P, ALZUETA M U, DAM-JOHANS-EN K, et al. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor[J]. Combustion and Flame, 1998, 115(1/2): 1-27.
- [20] ZHU Zhixiang, ZHANG Zhongxiao, YU Juan, et al. Experimental and kinetic studies of NO reduction by ammonia injection into high-temperature reducing atmosphere[J]. Fuel, 2022, 329: 125393.
- [21] 吕洪坤,杨卫娟,周俊虎,等. CO 含量对烟气选择 性非催化还原反应的影响[J].化工学报,2009,60
 (7):1773-1780.
 LÜ Hongkun, YANG Weijuan, ZHOU Junhu, et al.

Effects of CO content on selective non-catalytic reduction of NO_x [J]. **CIESC Journal**, 2009, 60 (7): 1773-1780.

[22] MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion [J]. Progress in Energy and Combustion Science, 1989, 15(4): 287-338. Discovery and Data Mining. San Francisco, USA: ACM, 2016: 785-794.

- [22] ZHANG Zhendong, JUNG C. GBDT-MO: gradientboosted decision trees for multiple outputs[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7): 3156-3167.
- [23] KE Guolin, MENG Qi, FINLEY T, et al. LightG-BM: a highly efficient gradient boosting decision tree [C]//Proceedings of the 31 st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017: 3149-3157.
- [24] SCHONLAU M, ZOU R Y. The random forest algorithm for statistical learning [J]. The Stata Journal: Promoting Communications on Statistics and Stata, 2020, 20(1): 3-29.
- [25] SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: Curran Associates Inc., 2012: 2951-2959.
- - [23] RAHMAN Z U, WANG Xuebin, ZHANG Jiaye, et al. Kinetic study and optimization on SNCR process in pressurized oxy-combustion[J]. Journal of the Energy Institute, 2021, 94: 263-271.
 - [24] 朱志祥,张忠孝,于娟,等. 无氧氛围下 NH₃/NO 反应机理研究[J]. 热能动力工程,2020,35(2):133-139,167.
 ZHU Zhixiang, ZHANG Zhongxiao, YU Juan, et al. Study on NH₃/NO reaction mechanism in the absence of oxygen [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(2): 133-139,167.
 - [25] CHEN Jun, FAN Weidong, WU Xiaofeng, et al. Effects of O₂/CO/CO₂ on NH₃ reducing NO at 1 073-1 773 K in different flow reactors-part I : The effect of O₂[J]. Fuel, 2021, 283: 119335.
 - [26] GLARBORG P, MILLER J A, RUSCIC B, et al. Modeling nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science, 2018, 67: 31-68.

• 1362 •