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A B S T R A C T   

Complex dynamic characteristics resulting from multi-system coupling and closed-loop control are ubiquitous in 
modern industrial process data, presenting significant challenges for process fault detection. However, con
ventional data-driven fault detection methods assume the data to be static or slightly dynamic. Addressing the 
complex dynamic characteristics and nonlinearity inherent in industrial processes, this paper proposes a dual- 
attention long short-term memory autoencoder (DALSTM-AE) for fault detection in dynamic processes. Long 
short-term memory (LSTM) and autoencoder (AE) are combined into a special encoder-decoder LSTM archi
tecture to learn both dynamic features and deep representations of variables in an unsupervised manner. Then, a 
dual-attention module is embedded in the decoder to properly learn the temporal dependencies associated with 
long input sequences and retain the most critical information. In addition, based on the reconstruction results of 
the DALSTM-AE model, two monitoring statistics are designed for fault detection. Finally, the effectiveness and 
superiority of the proposed method are fully demonstrated through case studies on a numerical simulation 
example, the Tennessee Eastman (TE) benchmark process, and practical coal pulverizing systems in power plants.   

1. Introduction 

The importance of industrial process monitoring in ensuring the 
safety and reliability of equipment operation has gained widespread 
recognition due to the increasing complexity and magnitude of 
contemporary industrial systems (Zhang and Zhao, 2022). Moreover, 
owing to the widespread advancement and application of advanced 
sensor technologies, data-driven process monitoring methods are facil
itated by the abundance of historical data (Wang et al., 2022). Compared 
to model-based and experiential knowledge-based methods, data-driven 
detection methods offer enhanced flexibility, simpler implementation, 
and reduced reliance on physical mechanisms and prior knowledge (van 
de Sand et al., 2021). Therefore, extensive research has been conducted 
on data-driven methods for industrial process monitoring and fault 
detection. 

Traditional data-driven fault detection methods include multivariate 
statistical process monitoring (MSPM) methods, slow feature analysis 
(SFA), and artificial neural networks (ANN). Common MSPM methods, 
such as independent component analysis (ICA), principal component 

analysis (PCA), and partial least squares (PLS), can linearly project the 
original data into a low-dimensional space for feature extraction (de de 
de Carvalho Michalski and Martha de Souza, 2022; Gao et al., 2022; Zhu 
et al., 2022). Researchers have also explored the interconnections be
tween risk assessment and data-driven fault diagnosis, reviewing the 
safety framework for the process industry (Arunthavanathan et al., 
2021; Deng et al., 2023; Liu et al., 2021b). Although these conventional 
methods do improve the detection performance to some extent, they 
typically assume that data samples are independent of each other and 
neglect the temporal correlation within the data. 

In practical industrial processes, the resulting data typically exhibits 
dynamic characteristics due to fluctuations in raw materials, multi- 
system coupling, and the implementation of closed-loop feedback con
trol (Zheng et al., 2022). Furthermore, the coupling of complex systems 
results in diverse temporal correlations among different variables, 
thereby leading to intricate dynamic characteristics. Several process 
monitoring methods that consider temporal correlation and dynamic 
characteristics have been proposed, achieving favorable fault detection 
performance. Dynamic extensions of MSPM methods, such as dynamic 
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PCA (DPCA), dynamic ICA (DICA), and dynamic PLS (DPLS), augment 
the process data matrix with multiple historical samples and subse
quently apply the traditional MSPM model directly to the augmented 
matrix for monitoring (Kong et al., 2022; Liu et al., 2021a; Tao et al., 
2020). However, the dimensions and parameters of the augmented 
matrix increase dramatically with the degree of dynamics, rendering 
these methods ineffective in extracting process dynamic changes. Other 
dynamic approaches, including dynamic inner principal component 
analysis (DiPCA), dynamic Bayesian network (DBN), and recursive 
exponential slow feature analysis (ESFA), have been proposed to extract 
dynamic information from process data (Dong and Qin, 2018; Meng 
et al., 2023; Yu and Zhao, 2019). Nonetheless, when confronted with 
extensive volumes of intricate industrial data, these methods tend to 
exhibit shallow dynamic feature representations, making it challenging 
to effectively capture potential dynamic features from long time series 
data and impeding the attainment of satisfactory fault detection results 
in dynamic processes. 

In recent decades, the rapid advancement of artificial intelligence 
has led to the emergence of deep learning, which shows significant 
potential for process safety monitoring and fault detection tasks. Deep 
neural networks, such as convolutional neural networks (CNN), deep 
belief networks (DBN), and autoencoder (AE) have been successfully 
applied to fault detection and fault diagnosis due to their ability to 
adaptively capture representative information and learn features from 
input data (Qian et al., 2021; Wang et al., 2020; Yu and Yan, 2021; Zeng 
et al., 2023; Zhang and Zhao, 2022; Zhang et al., 2020; Zhou et al., 
2020). To handle the dynamic characteristics of industrial process data, 
researchers have extensively investigated deep learning methods 
capable of handling temporal correlation (Lin et al., 2022; Zhu et al., 
2019). Particularly, long short-term memory (LSTM) is widely used for 
fault detection and safety assessment in dynamic processes, as it can 
adaptively learn the dynamic patterns in time series data using its in
ternal nonlinear gating units (Osarogiagbon et al., 2020; Yin et al., 
2021). Recently, networks combining AE and LSTM have achieved 
favorable applications in extracting dynamic features (Zhang and Qiu, 
2022). Aghaee et al. (Aghaee et al., 2023) developed an unsupervised 
multilayer model combining LSTM and AE networks to improve fault 
detection accuracy in industrial pharmaceutical processes. Amini et al. 
(Amini and Zhu, 2022) designed a source-aware AE fault detection 
network based on bidirectional LSTM architecture, which is capable of 
detecting unseen faults and dealing with imbalanced datasets. In addi
tion, attention mechanism (AM) has gained widespread attention due to 
its ability to focus on key features. Xiang et al. (Xiang et al., 2021) 
embedded an AM in the CNN-LSTM model to improve wind turbine fault 
detection accuracy. Yang et al. (Yang et al., 2022) integrated AM and 
deep multiple autoencoders to develop a dynamic domain adaptation 
method for rotary machine fault diagnosis under different operating 
conditions. However, existing methods often have limitations in 
capturing complex and uneven dynamic characteristics of industrial 
data, especially when the degree of dynamics is high. The network’s 
ability to convey information regarding the dynamics of past time steps 
is diminished when confronted with long sequence inputs (Sehovac and 
Grolinger, 2020). Therefore, it is essential to establish an adaptive 
monitoring model specifically designed for complex multivariate dy
namic processes. 

In this work, we develop a dual-attention long short-term memory 
autoencoder (DALSTM-AE) to extract dynamic nonlinear features effi
ciently. The DALSTM-AE combines LSTM and AE networks, capturing 
long-term temporal features and potential nonlinear representations of 
dynamic process variables. Additionally, a dual-attention module is in
tegrated into the model to adaptively assign weights, enabling the 
decoder to flexibly leverage the most crucial information from the input 
sequence during the decoding process. The proposed method can 
effectively handle long sequence data containing complex dynamic in
formation. The contributions of this paper are summarized as follows:  

a) DALSTM-AE integrates LSTM and AE networks into an encoder- 
decoder LSTM architecture that captures the long-term temporal 
features and potential nonlinear representations of dynamic process 
variables.  

b) Dual attention module is introduced to enhance the decoder’s ability 
to capture different dynamic features of variables, which can effec
tively solve the information loss problem induced by overly complex 
and long sequences.  

c) The proposed method is based on an end-to-end unsupervised 
learning paradigm, directly obtaining the system state using the 
original unlabeled samples of system variables and thereby acquiring 
optimal features for fault detection and risk warning.  

d) The performance of the proposed method for fault detection and 
process safety monitoring is verified by studies on a numerical 
simulation example, the Tennessee Eastman (TE) benchmark pro
cess, and practical coal pulverizing systems in power plants. 

The remainder of this paper is organized as follows. Section 2 in
troduces the main concepts and fundamentals of AE and LSTM. Section 3 
presents the proposed DALSTM-AE algorithm and explains its details. 
Then the dynamic fault detection procedure based on DALSTM-AE is 
described. Section 4 illustrates the applicability and effectiveness of the 
proposed method through a numerical case, TE benchmark process, and 
two practical industrial cases. Finally, the conclusions of this paper are 
given in Section 5. 

2. Preliminaries 

2.1. Autoencoder 

Autoencoder (AE) is a special type of deep learning network that has 
gained widespread interest and application in feature learning, data 
compression, and fault detection. A typical AE comprises an encoder and 
a decoder, which collaborate to learn the low-dimensional feature rep
resentation, as shown in Fig. 1. The encoder is responsible for mapping 
the original input data into hidden feature representations. Subse
quently, the decoder takes these hidden features as input and endeavors 
to reconstruct the input data at the output layer. Typically, the number 
of neural units of the input layer and output layer is the same. Therefore, 
AE can be trained in an unsupervised manner without requiring addi
tional labels or supervision. For a given input data x ∈ ℝm, the encoding 
and decoding process can be calculated as 

h = f (x) = s(Wx+ b) (1)  

x̂ = g(h) = s(W′h+ b′) (2)  

where s(⋅) represents the nonlinear activation function. h denotes the 

Fig. 1. Structure diagram of AE network.  
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encoded feature representation, and x̂ is the reconstruction of the input 
data. {W,W′} and {b, b′} are weight matrices and corresponding bias 
vectors, respectively. 

The loss function LAE and the objective function J can be expressed as 
follows: 

LAE =
1
2
‖xi − x̂i‖

2 (3)  

J =
1
n

∑n

i=1
LAE(xi, x̂i) (4)  

where n denotes the number of samples. 

2.2. LSTM neural network 

Recurrent neural network (RNN) is a deep learning network specif
ically designed for processing sequential data or time series data by 
computing recursively along the sequence evolution or time. RNN is 
characterized by memory ability, parameter sharing, and Turing 
completeness, making it suitable for nonlinear feature learning of time 
series problems. The RNN model utilizes information from prior inputs 
to influence the current input and output, enabling the network to retain 
memory of past content. However, RNN uses the backpropagation 
through time (BPTT) algorithm to determine the gradients, making it 
tend to run into problems of gradients vanishing and exploding in the 
training process. Therefore, RNN is not suitable for dealing with “long 
memory” problems. 

LSTM is a variant of RNN with a more elaborate internal “gating” 
mechanism, which allows it to remember valid information for a long 
time and forget invalid information. LSTM is effective for feature 
extraction when dealing with time series data with substantial dynamic 
relationships between variables. The LSTM hidden layer consists of 
multiple LSTM neurons, with the same number of neurons as the time 
step. The structure of a single LSTM cell is shown in Fig. 2. The hidden 
layer inputs include internal self-looping memory units ct− 1 in addition 
to external inputs xt and recurrent outputs ht− 1. Inside the LSTM are the 
gating units that control the flow of information, including input gate it , 
forget gate f t, and output gate ot . The input gate controls the calculation 
of new states and determines what information should be updated into 
the memory unit. The forget gate controls how much is forgotten in the 
current computation. And the output gate controls how much of the 
current output depends on the cell state ct. Given an input time series X 
= {x1, x2, ., xt}, where xt ∈ Rm represents an m-dimensional vector at 
time-instance t, the LSTM neuron memory unit ct and output htare 
calculated as follows: 

it = σ(Wixt +Uiht− 1 +bi) (5)  

f t = σ
(
Wf xt +Uf ht− 1 + bf

)
(6)  

c̃t = tanh(Wcxt + Ucht− 1)

ct = f t ⊙ ct− 1 + it ⊙ c̃t
(7)  

ot = σ(Woxt + Uoht− 1 + bo) (8)  

ht = ot ⊙ tanh(ct) (9)  

where c̃t denotes the updated new state. W and U represent the appro
priate weight matrices, and b represents the bias vector. σ(⋅) denotes the 
sigmoid activation functions, and ⊙ represents the element-wise multi
plication. 

3. Methodology 

3.1. Problem statement and motivation 

In modern industrial processes, the application of massive closed- 
loop control compensates for system disturbances and guarantees eco
nomic benefits. However, the closed loops formed are coupled with each 
other, and the propagation path of the influence is complex. Conse
quently, the process data exhibits different dynamic characteristics, 
leading to the collected samples no longer being independent but instead 
forming multivariate time series. Time series data contain more complex 
coupling information and features than single time point data, posing 
great challenges in feature learning. The LSTM autoencoder (LSTM-AE) 
is an encoder-decoder LSTM architecture integrated by LSTM and AE 
networks, which allows the model to encode the original inputs as fixed- 
dimension vectors and decode them into target sequences (Srivastava 
et al., 2015). LSTM is capable of effectively capturing the dynamic 
features and nonlinear relationships among variables. The AE neural 
network, on the other hand, demonstrates exceptional abilities in 
learning complex nonlinear information among time series variables. 
The LSTM-AE combining the two networks can extract nonlinear feature 
representations and learn the dynamic characteristics of the input data 
sequence, which has been proven to be suitable for industrial dynamic 
process monitoring (Chen et al., 2021; Li et al., 2020). As shown in  
Fig. 3, the conventional LSTM-AE model consists of two parts: the 
encoder LSTM and the decoder LSTM. 

In practice, the temporal correlation of different variables in multi
variate time series data from industrial processes is different, resulting in 
complex and heterogeneous dynamic characteristics. 

The dynamic degree of variables is denoted by the number of time 
lags, defined as s. The time lag steps of the variables are related to the 
process operation mechanism and can be determined by analyzing the 
autocorrelation function (ACF) and partial autocorrelation function 
(PACF) of the variables. To ensure that the time series dataset used for 
model training encompasses dynamic information for all variables, the 
length of the dynamic time window L (i.e., the order of dynamic process) 
needs to be greater than the maximum time-lag step smax in the variables. 
This allows us to more comprehensively capture the dynamic features 
and dependencies among variables over time. Therefore, it is assumed 
that L = smax +1 without loss of generality. Industrial production pro
cesses often encompass certain highly dynamic variables, leading to long 
and complex time series datasets. In this case, the LSTM-AE model ex
periences information loss while encoding fixed-dimension vectors, 
which restricts the decoder’s access to the information provided by the 
input and results in underperformance when dealing with long sequence 
data. The model also faces the problem of increased computational 
burden. Therefore, it is necessary to introduce a weight assignment 
method that allows the model to adaptively select the most important 
information from long time series data based on the current moment. 

Therefore, a dual-attention LSTM autoencoder (DALSTM-AE) algo
rithm and its monitoring scheme are presented in this work to solve the 
complex dynamic process fault detection problem. A detailed Fig. 2. Basic architecture of LSTM cell.  
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explanation of the DALSTM-AE model and its corresponding monitoring 
procedure are presented in the subsequent subsections. 

3.2. The proposed DALSTM-AE model 

The attention mechanism (AM) has been widely used in deep 
learning as a technique inspired by cognitive attention. The essence of 
data processing by AM is to construct an attention matrix by calculating 
the probability distribution of attention, thus assigning more weight to 
important information and highlighting the impact of key features on 
the results. 

As the length and complexity of the input sequence increase in 
conventional LSTM-AE architecture, the model’s ability to learn dy
namic features decreases, leading to a decline in performance. 

Therefore, a dual attention module with input global attention and self- 
attention is introduced to improve the performance of the LSTM-AE 
model for industrial fault detection. The schematic diagram of 
DALSTM-AE is illustrated in Fig. 4. 

The input global attention is to permit the decoder to utilize the most 
critical parts of the input sequence flexibly, by weighting the combi
nation of all encoded input vectors and attributing the highest weight to 
the most relevant vectors. Given an input time series X = {x1, x2, ., xL}

with length L, where xt ∈ ℝm represents an m-dimensional vector at 
time-instance t, the proposed DALSTM-AE model’s encoder maps the 
input into a hidden state vector at each time step. Particularly, the 
hidden state hL

s and cell state cL
s generated by the last LSTM cell of the 

encoder are taken as the initial states of the decoder. In the attention 

Fig. 3. The conventional LSTM-AE architecture.  

Fig. 4. Network structure diagram of DALSTM-AE.  
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layer, the encoder’s hidden states at all consecutive time steps are uti
lized to enhance the decoder’s ability to capture the dynamic features of 
diverse variables. The calculation process can be defined as follows: 

score(ĥt, hs) = ĥ
⊤

t hs (10)  

αts = softmax(score(ĥt,hs) ) (11)  

F(ĥt) =
∑

s
αtshs (12)  

where ĥt is the current target hidden state of the decoder, and hs is each 
hidden state of the encoder. αts denotes the attention weight, and F(ĥt)

represents the output vector after attention. In the decoder, the target 
hidden stateĥL is obtained from the first decoder LSTM cell, whose input 
is the concatenation of the initial attention output F(hL

s )and a fixed start 
vector. Then, the first hidden stateĥL will be taken as the target query 
vector for the global attention layer to obtain the output F(ĥL). More 
generally, the output F(ĥt) is concatenated with the decoder’s hidden 
state ĥt to generate the input for the LSTM cell at the next time step. 

The reconstructed time series data obtained by the decoder is in 
reverse order, which means that the decoding operation is recursive in 
the inverse time direction during training. Therefore, a self-attention 
layer is used before the output layer to adaptively adjust the temporal 
weights and select more critical dynamic features to fit the objective 
function. The process of self-attention is as follows: 

Q = Wq ĥ,K = Wk ĥ,V = Wv ĥ (13)  

Fs(ĥ) = softmax
(

QKT

̅̅̅̅̅
dk

√

)

V (14)  

where Wq,Wk,Wv represent the trainable parameter matrices, and ĥ 
denotes the feature outputs of the decoder LSTM layer. dk is the 
dimension of the key vector, and Fs(ĥ)means the output vector after self- 
attention. 

The last layer of the decoder consists of multiple dense layers, also 
known as fully connected layers or linear layers. The same dense (fully 
connected) operations are applied to every time step of the input 3D 
feature tensor. In our work, the last layer receives the output features 
from the self-attention layer and independently maps the features for 
each time step to the corresponding reconstructed output. The target 
sequence reconstructed by the decoder is the reverse order of the input 
sequence. The reconstructed vector x̂t at time point t can be calculated 
as 

x̂ t = wtFs(ĥ t) + bt (15)  

where wt and bt denote the weight matrix and bias, respectively. 
The DALSTM-AE model is trained by minimizing the error between 

the reconstructed data and the original input sequences. The loss func
tion is expressed in mean square error (MSE) 

Loss =
1
n

∑n

i=1
‖xi − x̂i‖

2
. (16)  

3.3. Process fault detection scheme 

The flowchart of fault detection based on DALSTM-AE is illustrated 

Fig. 5. Flowchart of fault detection based on DALSTM-AE.  
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in Fig. 5, consisting of two modules: offline modeling and online 
detection. The purpose of offline modeling is to fully learn the dynamic 
and internal characteristics of the normal system and set appropriate 
control limits for statistical indicators. In online fault detection, the well- 
trained model is utilized to obtain real-time statistical indicators and 
determine whether the process is abnormal. The specific application 
details of DALSTM-AE are as follows. 

3.3.1. Offline modeling 
Original process data X ∈ ℝn×m is collected under the normal oper

ation condition, where n is the number of samples and m is the number 
of process variables. The ACF and PACF of the original variables are 
calculated to analyze the dynamic correlation degree of the variables. 
The length of the time window L (i.e., the length of the sequence) is 
determined by the maximum time lag observed in the variables. The 
original data is standardized by the z-score normalization to a matrix 
with zero mean and unit variance. Finally, the processed data matrix is 
serialized and transformed into a time series X ∈ ℝ(n− L+1)×L×m using the 
sliding window technique, as shown in Fig. 6. 

The DALSTM-AE model is trained on the preprocessed training 
dataset to extract the dynamic and nonlinear features of the long se
quences. The reconstruction error of the normal condition is obtained by 
importing all normal data into the trained model. Anomalies can cause 
significant changes in the dynamic and nonlinear relationships between 
variables, leading to substantial reconstruction errors. Therefore, it is 
possible to determine whether a failure has occurred by designing 
reasonable statistical indicators. In this work, the MD2 and RE2 statistical 
indicators are used to monitor the abnormal changes in the dynamic 
process. The MD2 indicator is based on the Mahalanobis distance, 
reflecting the degree of deviation of the current reconstruction error. 
The MD2

i of the ith sequence sample can be calculated as 

MD2
i,t = (Δxi,t − μt)

T Σ− 1(Δxi,t − μt) (17)  

Δxi,t = xi,t − x̂i,t (18)  

MD2
i = max

[
MD2

i,1,MD2
i,2, ...,MD2

i,L

]
(19)  

where MD2
i,t represents the statistical indicator of the sample at time step 

t, and Δxi,t is the residual space. Σ− 1 represents the inverse covariance 
matrix of normal samples and μt denotes the mean of the reconstruction 
error for normal samples. 

The RE2 is defined as the Euclidean norm of the residual vector, 
which can be calculated as 

RE2
i = max

[⃦
⃦xi,1 − x̂i,1‖

2
,
⃦
⃦xi,2 − x̂i,2‖

2
,…,

⃦
⃦xi,t − x̂i,t‖

2]
. (20) 

When the monitoring statistical indicators of the normal sequence 
are obtained, kernel density estimation (KDE) is used to calculate the 
corresponding control limits. The KDE method is a nonparametric 

statistical technique that does not require any prior assumptions about 
the data distribution. Take the MD2 as an example. Assuming that a total 
of p MD2 statistics are calculated for normal sequence data, the proba
bility density function f̂ (MD2) can be expressed as follows (Li et al., 
2021): 

f̂

(

MD2

)

=
1

pB
∑p

k=1
K
(

MD2 − MD2
k

B

)

(21)  

where MD2
k is monitoring indicator of the kth data sample. B represents 

the bandwidth, calculated by the empirical equation B = p− 0.2 (Scott, 
2015). K(⋅) represents the kernel function that satisfies 

∫∞
− ∞ K(x)dx = 1. 

The Gaussian kernel function is adopted in this work: 

K
(

MD2 − MD2
k

B

)

=
1

B
̅̅̅̅̅
2π

√ exp

(

−

(
MD2 − MD2

k

)2

2B2

)

. (22) 

f̂ (MD2) represents the probability density distribution of MD2 sta
tistic. The probability of samples falling within a confidence interval 
called confidence level, usually expressed as a percentage. Given a 
certain confidence level of α, the upper limit of the confidence interval, 
selected as the control limit MD2

θ , can be calculated by the cumulative 
density function (Chen et al., 2020): 

α = P

(

MD2 < MD2
θ

)

=

∫ MD2
θ

− ∞
f̂
(
MD2)d

(
MD2). (23) 

The control limit for the RE2 statistic can be calculated similarly. 

3.3.2. Online detection 
The fault test data is collected in real time. The same data pre

processing procedure is performed as on the training data to obtain the 
normalized and serialized test dataset Xf . Then Xf is fed into the well- 
trained DALSTM-AE model to obtain the corresponding reconstructed 
sequence X̂f . The statistical indicators MD2

f and RE2
f of the test data are 

calculated by Eqs. (19) and (20), respectively. The corresponding con
trol limits MD2

θ andRE2
θ are calculated by the KDE method. If the current 

statistical indicator is greater than the control limit, the process is 
determined to be abnormal. Otherwise, the process is considered 
normal. Two common evaluation metrics, fault detection rate (FDR) and 
false alarm rate (FAR), are used to evaluate the performance of the 
proposed method. Specifically, the FDR and FAR are defined as follows: 

FDR =
number of fault samples detected

total samples (faulty)
(24)  

FAR =
number of normal samples detected as fault

total samples (normal)
. (25) 

Additionally, the overall FDR and FAR of two statistical indicators 

Fig. 6. Schematic of data serialization.  
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are introduced to facilitate a more comprehensive assessment. Specif
ically, we integrate two monitoring indicators to obtain the overall 
discrimination (OD) metrics: if neither RE2 nor MD2 exceeds the control 
limits, the test sample is considered normal. The detection logic satisfies. 

RE2
f ≤ RE2

θ and MD2
f ≤ MD2

θ ⇒fault free, otherwise faulty. 

4. Case studies 

In this section, the effectiveness and superiority of DALSTM-AE are 
illustrated through three case studies. The experiments in this study are 
conducted in Python 3.7, using Keras 2.3.1 and Tensorflow 2.1.0, on a 
computer with an i5–9400 F CPU @ 2.90 GHz and 16 GB RAM. 

4.1. Simulation case 

The numerical simulation case simulates a complex dynamic process 
where xk+1 is generated from a 5th-order vector autoregressive process 
and yk is generated from a latent variable model. 

xk+1 = Axk +Bxk− 1 +Cxk− 2 +Dxk− 3 +Exk− 4 +Fuk (26)  

yk = Gxk + ek + μk (27)  

A =

⎡

⎢
⎢
⎢
⎢
⎣

0.1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 − 0.67 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

C

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0.67 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

D =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.1 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

E =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 − 0.33

⎤

⎥
⎥
⎥
⎥
⎦

F =

⎡

⎢
⎢
⎢
⎢
⎣

0.66 1.55
1.97 2.38
4.32 − 0.73
− 2.64 3.26
1.16 2.01

⎤

⎥
⎥
⎥
⎥
⎦

G =

⎡

⎢
⎢
⎢
⎢
⎣

− 0.67 − 2.66 0.61 1.74 − 0.5
2.51 − 1.28 0.25 − 1.4 0.04
− 0.39 3.27 − 1.5 0.76 1.08
− 1.33 1.43 1.26 − 0.93 0.22
0.45 0.38 − 0.32 0.67 0.22

⎤

⎥
⎥
⎥
⎥
⎦

where process input uk ∈ ℝ2 ∼ N(0, 0.22), and noise ek ∈ ℝ5 ∼ N(0,
0.12). xk ∈ ℝ5 and yk ∈ ℝ5are state and process output, respectively. 
Seven process variables (five outputs and two inputs) are measured as 
simulated dynamic process data. The vector μk ∈ ℝ5 represents the 
operating center of the process output, whose value is assumed to be 1 
for normal process operation (Jeng, 2010). 

To construct the detection model, a dataset comprising 5000 normal 
samples is generated, with 4000 used for training and 1000 for testing. 
Two types of faults are simulated for the validation of the detection 
methods, each containing 1000 samples. Fault 1 directly changes the 
value of the process output. Fault 2 alters the dynamic characteristics of 
the variables by changing the coefficient matrix, which is difficult to be 
detected by general methods. The specific fault cases are designed as 
follows: 

Fault 1: The process output variable y3,k is multiplied by 1.8 from 
time point k = 501. 

Fault 2: A process fault is introduced such that the system matrix C 
changes to –C from time point k = 501. 

The high-order autoregression makes simple numerical simulation 
data have relatively complex and uneven dynamic features. The ACF and 
PACF analyses for five variables of the process state outputs xk are 

illustrated in Fig. 7. It can be seen that each variable has different de
grees of autocorrelation and different time lags of correlation. Among 
them, variable 5 exhibits the largest time-lag step, leading to an 
extended time dimension in the serialized sequence data. 

The time lag smax is set to 5 since this process is a 5th-order autore
gressive system, which is consistent with the results of the analysis 
performed on the ACF and PACF of the state variables. Consequently, the 
normalized data is serialized through a sliding window of length L =

smax + 1. Hyperparameter optimization is performed using a grid search 
method based on cross-validation. The number of hidden units in the 
DALSTM-AE model is determined to be 12. The batch size is set to 32, 
and the training epochs are set to 300. Training is performed using the 
Adam optimization algorithm with an initial learning rate of 0.001. 

Four other methods are adopted for comparison, including DPCA 
(Russell et al., 2000), DiPCA (Dong and Qin, 2018), LSTM-AE (Pota 
et al., 2023), and AE-BiLSTM (Lee et al., 2022). In DPCA, the number of 
principal components is determined by both empirical selection and 
comparative experiments. By comparing different cumulative variance 
contribution rates (from 80% to 95%), we ultimately chose to retain 12 
principal components with a cumulative contribution rate of 95% to 
achieve optimal monitoring performance. In DiPCA with a fixed time lag 
of smax, the number of dynamic latent variables is determined by the 
cross-validation method, resulting in 5 for this case. LSTM-AE is an 
autoencoder composed of two LSTMs with 12 hidden units. AE-BiLSTM 
is an encoder-decoder network using bi-directional LSTM cells with 12 
hidden units. The batch size is set to 32. For a fair comparison, the 
confidence levels for calculating the control limits are set to 99% across 
all methods. 

The detection results of the two fault cases are listed in Table 1. For 
DPCA, the FDRs of both statistical indicators T2 and SPE are consider
ably low on the two faults, indicating that DPCA fails to extract effective 
features to distinguish faulty samples from normal samples. This is 
mainly because DPCA is difficult to extract nonlinear features, and the 
simple dynamic augmentation matrix processing cannot adapt to com
plex dynamic features. The dynamic statistical metric Φv of DiPCA is 
effective in monitoring dynamic relationships, achieving FDRs greater 
than 90% with acceptable FARs. Nonetheless, the FARs of the static 
statistical metric Φs are notably high. 

To better compare the model performance, the monitoring metrics of 
LSTM-AE and AE-BiLSTM also utilize RE2, MD2 and OD. For fault 1, the 
FDRs of the OD indicator for both LSTM-AE and AE-BiLSTM are over 
90%. However, when examining the FDRs of the individual RE2 indi
cator, they are found to be below 50%, indicating shortcomings in both 
methods. For fault 2, the dynamic relationship of simulated fault sam
ples has changed. The conventional LSTM-AE cannot detect the fault 
accurately with an overall FDR of 64.6%. The FDR of the OD metrics for 
AE-BiLSTM is 77.8%, superior to LSTM-AE, but it still falls short of the 
requirements. The proposed DALSTM-AE algorithm can accurately 
detect faulty samples and achieve the optimum on both the FDR and FAR 
performance metrics. Specifically, the FDRs for RE2, MD2 and OD in both 
faults are higher than 98%, while the FARs are around 1%. Due to space 
constraints, only the detection charts for fault 2 are displayed in Fig. 8. 
The pink vertical line denotes the fault occurrence time, while the 
dashed red line indicates the control limit set at a 99% confidence level. 
The proposed DALSTM-AE algorithm exhibits superior capability in 
distinguishing faulty samples compared to other methods. 

4.2. Tennessee Eastman process case 

The TE process is a simulation based on real chemical reaction pro
cesses developed by the control department of Eastman Chemicals. This 
benchmark process simulates various characteristics of real industrial 
systems and is therefore widely used to test control and fault diagnosis 
models of complex industrial processes. The TE process consists of five 
main units: reactor, condenser, compressor, separator, and stripper. The 
variables generated by the TE process under closed-loop conditions 

L. Zeng et al.                                                                                                                                                                                                                                     



Process Safety and Environmental Protection 185 (2024) 1145–1159

1152

exhibit complex and uneven dynamic features, which are often over
looked by other methods. Therefore, we choose the TE process to vali
date the monitoring performance of the proposed method. TE process 
contains 52 process variables, including 11 manipulated variables 
(excluding the stirring rate of the reactor) and 41 measured variables 
(22 continuous and 19 component variables). The manipulated variables 
and the first 22 measured variables are sampled at intervals of 
3 minutes. The remaining 19 measurement variables have sampling 
intervals of 6 or 15 minutes. The process consists of a dataset for normal 
operating conditions and 21 fault datasets for different fault conditions. 
The processed dataset can be accessed from the website: http://web.mit. 
edu/braatzgroup/links.html. In this downloaded dataset, each type of 
fault contains 960 samples, where the fault is introduced from the 8th 
hour, corresponding to sample 161. 

Here we select 22 measurement variables and 11 manipulated vari
ables for the fault detection experiment. The training dataset comprises 
normal operation data with 960 samples, and an additional 500 samples 
of normal data are allocated for testing. By analyzing the ACF and PACF 
of the variables, it is determined that the maximum time lag is 9, 
implying that the serialization preprocessing uses a sliding window of 
length L = 10. In the experiment of this case, the number of hidden units 
of DALSTM-AE is set to 20. The batch size and training epochs are 16 and 
550, respectively. Through comparative validation, the number of 
principal components of DPCA is set at 139, determined by 95% cu
mulative variance contribution of the best monitoring performance. The 
dynamic latent variable of DiPCA is 9. In both LSTM-AE and AE-BiLSTM, 
the number of hidden units in the encoder and decoder is set to 20. 

The monitoring results of the proposed DALSTM-AE model on un
seen normal test data are shown in Fig. 9. The proposed method dem
onstrates a low incidence of false alarms when monitoring unseen 
normal data. The FAR for RE2 is 1% and the FAR for MD2 is 1.4%. The 
monitoring results indicate that the proposed method exhibits excellent 
generalization, effectively capturing the dynamic characteristics and 
nonlinear relationships of normal data. 

The detection results of DALSTM-AE and the comparison methods 
are summarized in Table 2. Faults 3, 9, and 15 are not included in the 
calculation of the average results because they are extremely difficult to 
detect for process monitoring methods. DPCA has the worst detection 
performance, with an average FDR of less than 70% for T2 and an 
average FAR of over 60% for SPE. The static statistical metric Φs of the 
DiPCA method also has a high average FAR. Meanwhile, its dynamic 
metric Φv cannot effectively identify all fault samples, with an average 
FDR of 71%. Compared with the LSTM-AE and AE-BiLSTM methods, the 
proposed DALSTM-AE achieves the best performance with the two sta
tistical indicators, especially on IDV [5, 10, 12, 16, 19]. For RE2, the 
average FDR of DALSTM-AE is 87.6%, which is higher than that of 
LSTM-AE at 78.2% and AE-BiLSTM at 82.7%. Moreover, the average 
FAR of the proposed method is 1.4%, which is lower than the other two 
methods. As for the statistical indicator MD2, the average FARs of LSTM- 
AE and AE-BiLSTM are 14.1% and 10.2%, respectively. The OD indicator 
combining the two statistics also shows similar results, with high overall 
FAR and FDR. This suggests that the two methods are prone to mis
identifying normal fluctuating samples as faults, especially on IDV [1, 
12, 14, 16, 17, 18]. The proposed DALSTM-AE can effectively detect 
faults while maintaining a low FAR, indicating its ability to distinguish 
between normal and abnormal samples. For the OD indicator, the 
average overall FAR is 3.6% and the average overall FDR is 95.4%. The 
results indicate that the dual-attention mechanism and the special 
encoder-decoder architecture significantly enhance the fault detection 
capability of DALSTM-AE. 

In addition, the detection charts of IDV(5) are listed in Fig. 10 to 
intuitively illustrate the effectiveness of the proposed method. Fault 5 is 
a step fault with a change in the internal temperature of the compressor 
condensate. As the simulation process continues, the system’s variations 
gradually stabilize, forming a new steady-state system that is difficult to 
detect by conventional methods. As shown in Fig. 10, DPCA, DiPCA, 
LSTM-AE, and AE-DiLSTM methods cannot effectively distinguish be
tween normal operation samples and faulty samples. In contrast, both 

Fig. 7. Autocorrelation and partial autocorrelation of xk in numerical simulation process. (a) autocorrelation, (b) partial autocorrelation.  

Table 1 
Evaluation indices of numerical case studies.  

Fault number Indices DPCA DiPCA LSTM-AE AE-BiLSTM DALSTM-AE 

T2 SPE Φv Φs RE2 MD2 OD RE2 MD2 OD RE2 MD2 OD 

Fault 1 FDRs  0.04  0.22  0.95  0.99  0.45  0.96  0.96  0.49  0.93  0.93  0.99  1.00  1.00 
FARs  0.00  0.02  0.01  0.96  0.01  0.01  0.02  0.01  0.00  0.01  0.00  0.00  0.00 

Fault 2 FDRs  0.01  0.11  0.95  0.98  0.32  0.65  0.65  0.63  0.77  0.78  0.99  0.99  0.99 
FARs  0.01  0.01  0.02  0.98  0.02  0.01  0.02  0.02  0.01  0.03  0.01  0.01  0.01 

AVG FDRs  0.03  0.17  0.94  0.98  0.39  0.80  0.80  0.56  0.85  0.86  0.99  0.99  0.99 
FARs  0.01  0.02  0.01  0.97  0.02  0.01  0.02  0.02  0.01  0.02  0.01  0.01  0.01  
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statistical indicators RE2 and MD2 of the proposed DALSTM-AE method 
successfully identify all fault samples. DALSTM-AE demonstrates the 
highest fault detection performance with FDR of up to 100% and FAR 
below 1%. The experiment demonstrates the applicability of the 
DALSMT-AE model in fault detection of complex industrial dynamic 
processes. 

4.3. Practical cases of coal pulverizing system 

We also investigate two practical cases of coal pulverization systems 
to illustrate the effectiveness of the proposed method. The coal 

pulverizing system plays a crucial role in coal-fired power plants, as it 
supplies pulverized coal of optimum temperature and fineness for 
combustion in the furnace. It contains raw coal bunker, coal feeder, coal 
mill, rotary separator, and fan system, as illustrated in Fig. 11. In 
practice, the coal feed flow of the coal feeder is adjusted in real time 
according to the changes in unit load, and the primary air flow of the 
coal mill is automatically adjusted according to the set air-to-coal ratio. 
Consequently, the coal mill outlet temperature deviates from the desired 
set value, leading to an adjustments of the hot and cold primary airflow. 
The coupled closed-loop control system of the pulverizing system makes 
its process variables have significant dynamic characteristics and 

Fig. 8. Monitoring charts for fault 2 of numerical simulation. (a) DPCA, (b) DiPCA, (c) LSTM-AE, (d) AE-BiLSTM, (e) DALSTM-AE.  
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nonlinearity. 
Two typical faults are considered, namely, abnormal loading pres

sure (case 1) and coal leakage (case 2). The two fault cases are respec
tively recorded from a 660 MW unit and a 330 MW unit located in 
Huzhou, Zhejiang Province, China. To enhance detection accuracy and 
minimize false alarms, variables are selected to construct a fault detec
tion model based on expert knowledge and practical experience. Addi
tionally, we remove variables with low correlation and lack of dynamic 
information to reduce the computational burden. The data information 
is outlined in Table 3. 

By analyzing the ACF and PACF of the variables, the maximum time 
lags of case 1 and case 2 are determined to be 14 and 26, respectively. 
The data from the normal operation of the practical system is divided 
into training data and test data, both of which are serialized through 
data preprocessing. The critical hyperparameters of the model are 
determined by the grid search method based on cross-validation to 
obtain the best reconstruction and detection performance simulta
neously. For the proposed DALSTM-AE, the number of hidden units is set 
to 30 for case 1 and 20 for case 2. The number of principal components 
for DPCA is 13 and 6, corresponding to case 1 and case 2. The number of 

Fig. 9. Monitoring charts of DALSTM-AE for TE process normal test data.  

Table 2 
FAR/FDR performance evaluation indices of TE process.  

Fault DPCA DiPCA LSTM-AE AE-BiLSTM DALSTM-AE  

T2 SPE Φv Φs RE2 MD2 OD RE2 MD2 OD RE2 MD2 OD 

IDV(1) 0.00/ 
0.99 

0.71/ 
1.00 

0.11/ 
1.00 

0.55/ 
1.00 

0.01/ 
0.99 

0.11/ 
1.00 

0.12/ 
1.00 

0.03/ 
1.00 

0.11/ 
1.00 

0.13/ 
1.00 

0.00/ 
1.00 

0.01/ 
1.00 

0.01/ 
1.00 

IDV(2) 0.00/ 
0.98 

0.72/ 
1.00 

0.03/ 
0.99 

0.38/ 
0.99 

0.02/ 
0.98 

0.05/ 
0.99 

0.06/ 
0.99 

0.03/ 
0.98 

0.03/ 
0.98 

0.05/ 
0.98 

0.01/ 
0.98 

0.03/ 
0.98 

0.03/ 
0.98 

IDV(3) 0.00/ 
0.00 

0.70/ 
0.71 

0.03/ 
0.06 

0.46/ 
0.59 

0.00/ 
0.03 

0.42/ 
0.34 

0.42/ 
0.34 

0.01/ 
0.06 

0.43/ 
0.26 

0.43/ 
0.26 

0.07/ 
0.03 

0.09/ 
0.09 

0.13/ 
0.11 

IDV(4) 0.00/ 
0.30 

0.74/ 
1.00 

0.10/ 
1.00 

0.36/ 
1.00 

0.03/ 
1.00 

0.13/ 
1.00 

0.13/ 
1.00 

0.03/ 
1.00 

0.02/ 
1.00 

0.05/ 
1.00 

0.01/ 
1.00 

0.01/ 
1.00 

0.01/ 
1.00 

IDV(5) 0.00/ 
0.24 

0.74/ 
1.00 

0.10/ 
0.13 

0.38/ 
0.78 

0.03/ 
0.28 

0.13/ 
1.00 

0.13/ 
1.00 

0.03/ 
0.43 

0.02/ 
1.00 

0.05/ 
1.00 

0.01/ 
1.00 

0.01/ 
1.00 

0.01/ 
1.00 

IDV(6) 0.00/ 
0.98 

0.65/ 
1.00 

0.09/ 
1.00 

0.33/ 
1.00 

0.01/ 
1.00 

0.03/ 
1.00 

0.03/ 
1.00 

0.04/ 
1.00 

0.03/ 
1.00 

0.07/ 
1.00 

0.00/ 
1.00 

0.00/ 
1.00 

0.00/ 
1.00 

IDV(7) 0.00/ 
1.00 

0.77/ 
1.00 

0.08/ 
0.72 

0.40/ 
1.00 

0.03/ 
1.00 

0.01/ 
1.00 

0.04/ 
1.00 

0.03/ 
1.00 

0.03/ 
1.00 

0.06/ 
1.00 

0.00/ 
1.00 

0.01/ 
1.00 

0.01/ 
1.00 

IDV(8) 0.00/ 
0.97 

0.62/ 
0.99 

0.03/ 
0.96 

0.38/ 
1.00 

0.04/ 
0.98 

0.12/ 
0.99 

0.16/ 
0.99 

0.01/ 
0.97 

0.04/ 
0.98 

0.05/ 
0.98 

0.00/ 
0.97 

0.01/ 
0.98 

0.01/ 
0.98 

IDV(9) 0.00/ 
0.00 

0.75/ 
0.71 

0.06/ 
0.06 

0.71/ 
0.61 

0.03/ 
0.04 

0.38/ 
0.29 

0.38/ 
0.29 

0.07/ 
0.08 

0.26/ 
0.26 

0.30/ 
0.28 

0.01/ 
0.02 

0.09/ 
0.06 

0.10/ 
0.08 

IDV(10) 0.00/ 
0.08 

0.56/ 
0.95 

0.07/ 
0.08 

0.44/ 
0.87 

0.01/ 
0.40 

0.05/ 
0.98 

0.05/ 
0.98 

0.00/ 
0.60 

0.03/ 
0.97 

0.03/ 
0.97 

0.00/ 
0.62 

0.02/ 
0.94 

0.02/ 
0.94 

IDV(11) 0.00/ 
0.75 

0.68/ 
1.00 

0.09/ 
0.86 

0.46/ 
0.97 

0.01/ 
0.95 

0.11/ 
0.99 

0.11/ 
0.99 

0.04/ 
0.96 

0.05/ 
0.97 

0.08/ 
0.98 

0.06/ 
0.95 

0.00/ 
0.95 

0.06/ 
0.96 

IDV(12) 0.01/ 
1.00 

0.60/ 
1.00 

0.07/ 
0.95 

0.38/ 
1.00 

0.03/ 
1.00 

0.21/ 
1.00 

0.21/ 
1.00 

0.11/ 
1.00 

0.20/ 
1.00 

0.25/ 
1.00 

0.01/ 
1.00 

0.03/ 
1.00 

0.03/ 
1.00 

IDV(13) 0.00/ 
0.94 

0.68/ 
0.99 

0.04/ 
0.92 

0.39/ 
0.99 

0.00/ 
0.94 

0.09/ 
0.96 

0.09/ 
0.96 

0.00/ 
0.95 

0.03/ 
0.96 

0.03/ 
0.96 

0.00/ 
0.95 

0.01/ 
0.95 

0.01/ 
0.95 

IDV(14) 0.00/ 
1.00 

0.70/ 
1.00 

0.14/ 
1.00 

0.43/ 
1.00 

0.00/ 
1.00 

0.11/ 
1.00 

0.11/ 
1.00 

0.03/ 
1.00 

0.14/ 
1.00 

0.15/ 
1.00 

0.03/ 
1.00 

0.00/ 
1.00 

0.03/ 
1.00 

IDV(15) 0.01/ 
0.00 

0.69/ 
0.69 

0.08/ 
0.05 

0.36/ 
0.53 

0.01/ 
0.02 

0.23/ 
0.36 

0.23/ 
0.37 

0.03/ 
0.06 

0.16/ 
0.33 

0.19/ 
0.34 

0.00/ 
0.04 

0.02/ 
0.15 

0.02/ 
0.17 

IDV(16) 0.01/ 
0.03 

0.75/ 
0.97 

0.09/ 
0.10 

0.67/ 
0.90 

0.03/ 
0.23 

0.42/ 
1.00 

0.42/ 
1.00 

0.07/ 
0.49 

0.45/ 
0.99 

0.45/ 
0.99 

0.02/ 
0.64 

0.13/ 
0.98 

0.15/ 
0.98 

IDV(17) 0.00/ 
0.91 

0.70/ 
0.99 

0.08/ 
0.95 

0.44/ 
0.98 

0.01/ 
0.97 

0.24/ 
0.98 

0.24/ 
0.98 

0.04/ 
0.97 

0.13/ 
0.98 

0.15/ 
0.98 

0.05/ 
0.98 

0.04/ 
0.98 

0.07/ 
0.98 

IDV(18) 0.00/ 
0.89 

0.69/ 
0.96 

0.05/ 
0.91 

0.39/ 
0.95 

0.04/ 
0.90 

0.19/ 
0.91 

0.20/ 
0.91 

0.09/ 
0.90 

0.16/ 
0.92 

0.21/ 
0.92 

0.02/ 
0.90 

0.01/ 
0.90 

0.02/ 
0.91 

IDV(19) 0.00/ 
0.45 

0.62/ 
1.00 

0.08/ 
0.33 

0.35/ 
0.89 

0.00/ 
0.48 

0.03/ 
1.00 

0.03/ 
1.00 

0.00/ 
0.56 

0.08/ 
1.00 

0.08/ 
1.00 

0.00/ 
0.73 

0.04/ 
1.00 

0.04/ 
1.00 

IDV(20) 0.00/ 
0.44 

0.75/ 
0.97 

0.04/ 
0.65 

0.32/ 
0.89 

0.01/ 
0.58 

0.12/ 
0.92 

0.13/ 
0.92 

0.00/ 
0.67 

0.03/ 
0.92 

0.03/ 
0.92 

0.02/ 
0.64 

0.01/ 
0.92 

0.03/ 
0.92 

IDV(21) 0.00/ 
0.41 

0.68/ 
0.83 

0.08/ 
0.21 

0.60/ 
0.56 

0.01/ 
0.41 

0.40/ 
0.73 

0.40/ 
0.93 

0.07/ 
0.42 

0.27/ 
0.69 

0.30/ 
0.69 

0.03/ 
0.41 

0.12/ 
0.58 

0.12/ 
0.58 

AVG (excluding 3, 
9, 15） 

0.00/ 
0.69 

0.68/ 
0.98 

0.08/ 
0.71 

0.42/ 
0.93 

0.02/ 
0.78 

0.14/ 
0.97 

0.15/ 
0.97 

0.04/ 
0.83 

0.10/ 
0.96 

0.12/ 
0.96 

0.01/ 
0.88 

0.03/ 
0.95 

0.04/ 
0.95  
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dynamic latent variables for DiPCA is 13 and 11, respectively. The 
number of neurons in LSTM-AE and AE-BiLSTM is consistent with the 
proposed method in this work. 

In this experiment, FDR and FAR are similarly used as detection 
performance evaluation metrics. However, the exact start time of a fault 
is often difficult to determine in actual industrial processes. The time of 
fault recording in the operation log often lags behind the actual fault 
occurrence time. However, for this study, the FDR is computed based on 
the recording time, which indicates that the system is indeed in a fault 
state. In addition, the time when an algorithm can continuously detect 

the fault is considered to be the actual start time of a fault. 
The detection results are summarized in Table 4. The detection 

charts of five methods for case 1 are listed in Fig. 12, and their analysis is 
discussed below. For DPCA, the T2 statistic shows a detection delay with 
significant missed detections in the early stage of this fault. The FAR of 
the SPE statistic is 30.6%, which fails to identify normal process state 
changes. For DiPCA, the FAR of the static statistical metric Φs is 
particularly high, and normal variations caused by unit load changes are 
mistaken for faults. The FDR of the dynamic metric Φv is only 63.8%, 
which cannot detect the fault accurately. As illustrated by the green 

Fig. 10. Monitoring charts for IDV(5) of TE process. (a) DPCA, (b) DiPCA, (c) LSTM-AE, (d) AE-BiLSTM, (e) DALSTM-AE.  
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vertical line in Fig. 12(e), the MD2 statistic of DALSTM-AE first detects 
the fault at sequence sample point 330, which is considered to be the 
start time of this fault. The time detected is approximately 39 minutes 
earlier than the recorded time, which is valuable for incipient fault 
detection. The MD2 of LSTM-AE also has similar results, detecting faults 
at an early stage. However, it fails to effectively distinguish between 
normal process state changes and fault-induced changes in dynamic 
systems, resulting in more than 35% of FARs. AE-BiLSTM suffers from 
the same problem with an average overall FAR of 30.8%. In contrast, the 
proposed DALSTM-AE method has fewer false alarms, with FARs in the 
OD indicator below 4%. These detection results further demonstrate the 
effectiveness and superiority of DALSTM-AE in real industrial dynamic 
processes. 

4.4. Sensitivity analysis to sequence length 

To further validate the applicability of the proposed DALSTM-AE 
model to complex long sequence data, we investigate the effect of 
sequence length L on the model’s reconstruction performance. Specif
ically, the root mean square error (RMSE) (the square root of the loss 
function) is used to evaluate the accuracy of model reconstruction. The 
results of the TE process data and practical case 1 under different 
sequence lengths are shown in Fig. 13. The findings show that the pro
posed DALSTM-AE model exhibits robustness to sequence length as its 
RMSE varies slowly with the increase in sequence length. Additionally, 
DALSTM-AE consistently achieves the smallest RMSE at various 
sequence lengths, demonstrating optimal reconstruction performance. 

Fig. 11. Schematic diagram of coal pulverizing system.  

Table 3 
Data information of the practical pulverizing system.  

Practical 
case number 

Fault type Key variables Sampling 
interval 

Number of training 
data/ test data/ fault 
test data 

Fault 
recording 
point 

Fault cause 

Case 1 Abnormal 
loading 
pressure 

29 variables: Unit load, current of coal mill, coal feed flow, 
primary air pressure, differential pressure of coal mill inlet and 
outlet, hydraulic pump current, loading oil pressure, etc. 

1 min 5130/570/654  383 Internal leakage of 
hydraulic cylinder 

Case 2 Coal leakage 13 variables: Unit load, current of coal mill, coal feed flow, 
outlet temperature, differential pressure between seal air and 
primary air, differential pressure of coal mill inlet and outlet, 
etc. 

20 s 3207/400/1257  573 Coal mill carbon 
seal ring leaking 
powder  

Table 4 
Evaluation indices of practical case studies.  

Practical case number Indices DPCA DiPCA LSTM-AE AE-BiLSTM DALSTM-AE 

T2 SPE Φv Φs RE2 MD2 OD RE2 MD2 OD RE2 MD2 OD 

Case 1 FDRs 0.89  1.00  0.64  0.96  0.89  1.00  1.00  0.92  1.00  
1.00 

1.00  1.00  1.00 

FARs 0.01  0.31  0.07  0.65  0.00  0.36  0.36  0.04  0.28 0.28  0.02  0.02  0.04 
Case 2 FDRs 0.63  0.89  0.38  1.00  0.93  1.00  1.00  0.94  1.00  

1.00 
0.93  1.00  1.00 

FARs 0.00  0.03  0.08  0.95  0.22  0.25  0.38  0.14  0.23 0.33  0.03  0.00  0.03 
AVG FDRs 0.76  0.95  0.51  0.98  0.91  1.00  1.00  0.97  1.00  

1.00 
0.97  1.00  1.00  

FARs 0.00  0.17  0.08  0.80  0.11  0.31  0.37  0.12  0.32  
0.31 

0.03  0.01  0.04  
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In contrast, the reconstruction performance of LSTM-AE and AE-BiLSTM 
deteriorates significantly with increasing sequence length. The experi
ment results highlight that DALSTM-AE can effectively learn temporal 
features and latent representations, addressing the issue of degradation 
in reconstruction performance when dealing with complex and lengthy 
sequences. As a result, the proposed method learns the effective features 
of the complex industrial data and performs effectively in process 
monitoring and fault detection. 

5. Conclusions 

In this paper, a novel unsupervised deep learning model, DALSTM- 
AE, is proposed for fault detection in industrial complex dynamic pro
cesses. Specifically, the LSTM and AE networks are integrated into a 
special encoder-decoder LSTM architecture that can capture the dy
namic relationships and deep representations of variables in an unsu
pervised manner. The dual attention module is integrated into the 
decoder, enabling the selection of critical information and effective 

Fig. 12. Monitoring charts for case 1 of the practical pulverizing system. (a) DPCA, (b) DiPCA, (c) LSTM-AE, (d) AE-BiLSTM, (e) DALSTM-AE.  
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extraction of dynamic features from complex time series data, thus 
addressing the problem of information loss in long time series. In 
addition, the monitoring statistics RE2 and MD2 are designed, and the 
corresponding control limits are calculated by KDE. The introduction of 
the OD indicator, considering both statistical metrics, provides a 
comprehensive evaluation of performance. The effectiveness of the 
proposed method is demonstrated by case studies on a numerical 
simulation example, the TE benchmark process, and practical coal pul
verizing systems in power plants. The results of the comparative analysis 
indicate that the proposed DALSTM-AE exhibits superior monitoring 
capabilities in complex dynamic processes. It effectively detects anom
alies at an early stage and provides timely warnings for various types of 
safety risks. The proposed method has a significant reference value for 
safety and risk assessment of industrial dynamic processes. However, it 
should be noted that DALSTM-AE is designed for single-mode dynamic 
process and multi-mode non-stationary dynamic process monitoring 
needs to be considered in the future. 
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