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A B S T R A C T   

In most industrial sectors, large coal-fired boilers are a source of carbon and pollutant emissions, so it is 
important to carry out combustion adjustment and optimize energy-saving operation of coal-fired boilers. 
Traditional combustion adjustment relies on human intervention, but manual adjustment is difficult to achieve 
synergistic optimization of NOx and thermal efficiency at the same time, so there is a large adjustment space for 
boiler combustion optimization. Artificial intelligence technology can explore the potential of combustion 
optimization from boiler operation data. Currently, the boiler combustion optimization method based on su
pervised learning modeling and optimization algorithms has good optimization effect and high application value. 
At present, there are problems such as the combination of dynamic model and optimization algorithm is difficult 
and the optimization time is long, etc. This paper adopts feature classification and multi-model coupling to build 
a static-dynamic composite prediction model of boiler performance indicators, dynamic prediction model of 
boiler thermal efficiency and nitrogen oxides (NOx) is established by using long short-term memory (LSTM) and 
one-dimensional convolutional neural network (1D_CNN). The model is categorized into static and dynamic 
models based on the input features, and the dynamic model is coupled with BP neural network to establish a 
static-dynamic composite prediction model and further couples the proximal policy optimization (PPO) rein
forcement learning algorithm to establish a boiler in-place optimization strategy. Through the experimental 
validation of 5619 test cases, the strategy successfully achieves 63.5 % co-optimization of NOx and thermal 
efficiency, with thermal efficiency increase ranging from 0-0.61 % and NOx reduction ranging from 0-65 mg/m3. 
Meanwhile, comparing the optimization effect of the PPO algorithm with that of the genetic algorithm (GA) 
shows that the PPO strategy has a more significant effect on NOx reduction while keeping the thermal efficiency 
optimized. Moreover, the online decision-making speed of the PPO strategy is much higher than that of the GA, 
with an average time consumption of only 0.015 s, while the GA requires about 3 min for a single optimization, 
which indicates that the combustion optimization strategy of the PPO algorithm coupled with the composite 
prediction model has a significant advantage in realizing high-efficiency and accurate optimization.   

1. Introduction 

Large coal-fired boilers are necessary components in most industrial 
sectors, realizing industrial production, power supply and district 
heating, etc. Coal-fired boilers are the major source of carbon emissions 
and pollutant emissions in related industries, and NOx is one of the main 
pollutants emitted from boilers. Most of the large coal-fired boilers are 
equipped with distributed control systems (DCS), recording a large 
amount of boiler operation history data. Based on the rich operating 

data of boilers, artificial intelligence technology can explore the po
tential of boiler combustion optimization from the data, and provide the 
boiler combustion adjustment plan by manual by computer with lower 
risk. It can improve the thermal efficiency of boilers as much as possible 
while ensuring the NOx emission meets the standard, thus improving the 
boiler operation economy. 

Establishing a boiler combustion optimization method generally 
consists of two steps: establishing a high-precision boiler performance 
prediction model; establishing a boiler combustion optimization algo
rithm based on the prediction model. 
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In terms of predictive modeling, the “black box” models for data 
modeling are mainly based on supervised learning, and the models can 
be divided into static and dynamic categories [1,2]: 

1) Static models: including back propagation neural network (BPNN) 
[3,4], bidirectional learning machine (BLM) [5] support vector regres
sion (SVR) [6–8], extreme learning machine (ELM) [9–11], GRNN [12], 
etc. The inputs of such models have no time dimension and are therefore 
considered as static models. Although the static model can better predict 
the boiler performance under steady state conditions, it still has some 
limitations, and the dynamic prediction is relatively weak for variable 
operating conditions. In addition, the actual combination of optimiza
tion algorithms to achieve boiler combustion optimization also needs to 
be optimized for steady state conditions, this is contradictory to the 
reality of frequent changes in boiler loads. 

2) Dynamic models: including one-dimensional convolutional neural 
network (1D_CNN) [13,14], long short-term memory (LSTM) [15–18], 
etc. Such models require the input data to contain a temporal dimension, 
and are therefore regarded as dynamic models. Dynamic models can 
predict boiler performance indicators online and dynamically, and 
better meet the needs of online boiler combustion optimization. Li N 
et al. [13] built a NOx prediction model for coal-fired boilers based on 
1D_CNN, and the root mean square error of the model was only 
1.06–1.11 mg/m3 on the test data. Guotian Yang et al. [17] built a NOx 
prediction model for pulverized coal boilers based on LSTM with a root 
mean square error of 2.271 mg/m3 on the test data. In terms of dynamic 
prediction on continuous data, Pan H et al. [16] compared LSTM with BP 
and SVR models in detail; Peng Tan et al. [15] also compared LSTM with 
SVR, and the results all showed that dynamic models such as LSTM and 
RNN have better dynamic prediction on continuous data. 

Dynamic models are currently used for soft measurements and con
dition warnings, and relatively little research has been done on 
combining them with optimization algorithms to achieve online boiler 
combustion optimization. The key problem is the difficulty of combining 
dynamic models with optimization algorithms and whether the algo
rithms meet the speed requirements of online optimization. Cheng Y 
et al. [14] serialized the combustion control parameters and processed 
them using 1D_CNN, and coupled them with LSTM to build a prediction 
model to discretize the combustion tuning scheme to optimize the 
combination with the algorithm. Zhan X [18] et al. separated the input 
of the LSTM neural network and input various boiler operation 

parameters and combustion adjustment parameters into the LSTM 
network layer in stages, thus enhancing the influence of combustion 
adjustment parameters on the dynamic prediction model. 

In terms of combining predictive models with optimization algo
rithms to achieve combustion optimization, the two main types of 
combined optimization algorithms are decision iteration and strategy 
training:  

1) Decision iteration: Decision iteration method is based on heuristic 
algorithms, including ant colony algorithm (ACO) [7,8], genetic al
gorithm (GA) [3,4], particle swarm algorithm (PSO) [19,20], etc. L. 
Zheng et al. [24] compared in detail the optimization speed of GA, 
PSO, and ACO when combined with the SVR prediction model; the 
algorithm takes three to four minutes to compute, and even with the 
optimization improvements of algorithm, the speed is usually diffi
cult to meet the demand of online optimization. Therefore, the de
cision iterative method is generally combined with a static model to 
optimize mainly for steady-state operating conditions.  

2) Strategy training: The combustion optimization strategy contains the 
combustion optimization adjustment scheme for all boiler operating 
conditions. The strategy training method aims to first parameterize 
the combustion optimization strategy, and then pre-train the strategy 
through the parameters, and use the trained strategy directly for the 
boiler operating conditions that change in real time without online 
iterative calculation. Currently, the main ones are heuristic dynamic 
planning (HDP), case-based reasoning (CBR) [21], and reinforce
ment learning (RL) [14,22–24]. Niu Y et al. [21] used CBR to reason 
about the decision actions to be taken under a new combustion task 
by learning previous cases of combustion optimization tasks. Rein
forcement learning algorithms including deep Q-learning (DQN), 
advantage actor critic(A2C), have been widely used in recent years in 
the fields of games [25], robotics [26], and power and energy 
[27,28]. Cheng Y et al. [14] established a discrete optimization 
method for boiler combustion tuning parameters based on the DQN 
algorithm. Adams D et al. [5] used A2C algorithm for the optimiza
tion of continuous variables such as primary and secondary airflow. 
Zhan X et al [18] built an online combustion optimization method 
based on A2C algorithm, and finally successfully applied it to power 
plants after the improvement of the training method and the dy
namic prediction model. Since the strategy is trained offline and 

Nomenclature 

DCS distributed control systems 
PPO proximal policy optimization 
LSTM long short-term memory 
1D_CNN one-dimensional convolutional neural network 
NOx nitrogen oxide 
GA genetic algorithm 
BPNN back propagation neural network 
BLM bidirectional learning machine 
SVR support vector regression 
ELM extreme learning machine 
PSO particle swarm algorithm 
ACO ant colony algorithm 
HDP heuristic dynamic planning 
A2C advantage actor critic 
DBQ deep Q-learning 
RNN recurrent neural network 
RMSE root mean square error 
Val_MSE mean square error on the validation set 
1D_MaxPool one-dimensional maximal pooling 
a reinforcing learning action 

s reinforcing learning state 
r;R reinforcing learning reward 
Rdis reinforcing learning cumulative discount reward 
tra single-round interaction trajectory length 
γ cumulative reward discount factor 
di dynamic features 
cj combustion tuning parameters 
xl remaining static features except for combustion tuning 

parameters 
perf boiler performance indicators 
step dynamic features sequence length 
series dynamic features merging 
static static feature merging 
k number of dynamic features 
n number of combustion tuning parameters 
p number of combustion tuning parameters 
ρe thermal efficiency increase amplitude 
ρn NOx increase amplitude 
Δactionj amplitude adjustment of combustion tuning parameters 
Δeff thermal efficiency increment 
ΔNOx NOx increment  
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decided online, the actual decision speed can reach millisecond, so it 
can quickly provide combustion adjustment plan to realize online 
optimization according to the real-time changing boiler status. 

The current static model based on steady-state operating data com
bined with iterative optimization algorithm for combustion optimiza
tion is limited to the optimization of boiler steady-state operating 
conditions, and the optimization speed is slow; the dynamic model 
based on raw operating data has relatively good dynamic prediction 
effect on continuous operating conditions, but it is mainly used for soft 
measurement or status warning of boilers. In the combination of dy
namic models and optimization algorithms, multi-model coupling, dis
cretization of combustion adjustment parameters, and phasing of 
dynamic model inputs are mostly used. In terms of multi-model 
coupling, there is still lack of research on the effect of coupling on 
boiler dynamic prediction and on boiler combustion optimization when 
combined with optimization algorithms. In the aspect of improving the 
speed of algorithms, the current research mainly adopts the method of 
strategy pre-training, including heuristic dynamic planning, case infer
ence and reinforcement learning, but the related research is still rela
tively few, among which, in reinforcement learning, the research on 
online combustion optimization of boilers using PPO algorithm is still 
lacking. 

In this paper, the dynamic prediction model of boiler performance 
index is established by feature classification and multi-model coupling, 
and the boiler combustion online optimization strategy is established by 
coupling the prediction model with PPO reinforcement learning algo
rithm. The main research elements are constructed as follows:  

• According to the boiler combustion mechanism and correlation 
analysis, the input features of the neural network are filtered and 
classified. The composite static-dynamic neural network prediction 
model based on feature classification and the dynamic neural 
network prediction model based on feature unclassified are built 
respectively, and compare the dynamic prediction performance of 
the composite model and the dynamic model.  

• Composite and dynamic prediction models built are coupled with 
genetic algorithms to establish decision-based iterative boiler com
bustion optimization algorithms to study the combustion optimiza
tion effects of the algorithms, and to investigate the effects of the 
composite model structure based on feature classification on boiler 
combustion optimization through comparative analysis. 

• The PPO reinforcement learning algorithm is coupled with a com
posite prediction model to establish an online optimization strategy 
for boiler combustion, and the time spent in actual decision making 
is significantly reduced by pre-training and online decision making 

of the strategy. The combustion optimization performance of the 
strategy is studied in detail, and the optimization effects of the 
strategy and GA are compared and analyzed under the same working 
conditions. 

2. Methodology 

2.1. Deep neural network 

2.1.1. Back propagation neural network 
Back propagation neural network (BPNN) is a basic neural network 

using back propagation algorithm, also known as fully connected neural 
network. the general structure of BPNN is shown in Fig. 1, which con
tains input layer, hidden layer and output layer, each layer network 
nodes are interrelated, and the network weight correction generally 
consists of forward propagation and error backward transmission. 

2.1.2. Long short-term memory neural network 
LSTM is a variant of recurrent neural network (RNN), which has a 

more elaborate internal “gating” mechanism than RNN [34]. LSTM can 
remember the valid information for a long time and forget the invalid 
information. When there are obvious temporal correlations between 
variables, LSTM can play a better prediction effect, and it is used more 
often when processing temporal data in practice. 

The LSTM implicit layer consists of multiple LSTM neurons, and the 
hidden layer inputs include internal self-looping memory units in 
addition to external inputs and recurrent outputs. LSTM has internal 
gating units to control the flow of information, including input gates, 
forgetting gates and output gates. The input gate controls the compu
tation of new states and how much is updated into the memory unit; the 
forgetting gate controls how much is forgotten in the current compu
tation; and the output gate controls how much of the current output 
depends on the internal self-looping memory unit. 

2.1.3. One-dimensional convolutional neural network 
One-dimensional convolutional neural network (1D_CNN) can pro

cess sequence data, treating time as a spatial dimension and extracting 
features by sliding convolution on sequence data, and its effectiveness in 
processing certain sequence data is comparable to RNN and LSTM, while 
the computational cost is much smaller and the computation is much 
faster. At present, 1D_CNN has achieved great success in sequence pro
cessing tasks such as audio and text [29]. With a common convolutional 
kernel, the 1D_CNN can recognize local patterns in a sequence with 
sliding invariance, i.e., the pattern can be recognized at other locations 
in the sequence as well, which ultimately allows for efficient use of the 
data and serves as a feature filter. 

2.2. Reinforcement learning 

2.2.1. Actor-critic algorithm 
Reinforcement learning is a constant interaction and continuous 

learning approach to decision optimization. The fundamentals of rein
forcement learning: The intelligent agent is responsible for behavioral 
decisions and interacts with the environment. At the current time t, 
intelligent agent receives the state of the environment st, makes an im
mediate decision to give the action at, and the environment receives it 
after making state st shift to st+1, and gives reward rt . 

Stochastic policy search includes strategy gradient method, actor 
critic method, etc. The stochastic policy search method has been applied 
well to large state-space, behavior-space decision problems (e.g., robot 
control [35]). The stochastic policy is defined as π(θ), i.e., for one state 
st , the behavior at derived from the policy π(θ) satisfies the probability 
distribution p(at |st ; θ). 

For a Markov decision process (MDP), an interaction trajectory is 
defined as τ = (s0, a0, r0, s1, ..., st , at , rt , sH), γ is the discount factor, and 
R(τ) is the cumulative discounted reward for the remaining trajectory 

Fig. 1. BPNN structure.  
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after the actor at is taken: 

R(τ) =
∑T

i=t
γi− tri (1) 

The goal of reinforcement learning is to maximize the total cumu
lative discounted payoff expectation U(θ), and the policy search problem 
is transformed into an optimization problem. Optimized sampling 
gradient method, gradient ∇θU(θ) calculated as follows: 

∇θU(θ) =
∑

τ
R(τ)∇pθ(τ) ≈

1
m
∑m

i=1

(
∑H

t=0
R
(
τi)∇θlogp

(
ai

t |s
i
t ; θ
)
)

(2) 

Actor-Critic algorithm consists of Actor and Critic components. 
∇θlogp

(
ai

t |si
t ; θ
)

plays the role of Actor, performing a certain behavior 
according to the current state; R(τi) plays the role of Critic, evaluating 
the current behavior according to reward. Actor is responsible for the 
parameterization of the policy, Critic outputs the state behavior value 
function Q(st , at). Due to the addition of Critic, Actor-Critic algorithm 
allows for single-step updating and faster training. Actor network 
updating uses stochastic policy gradients for gradient ascent; Critic 
network updating performs gradient descent based on the temporal 
differential error (TDerror), as defined below: 

TDerror = rt + γmax
a

Q(st , at) − Q(st , at) (3) 

The policy gradient formula based on Critic imports the advantage 
function Aθ(st ,at), and stochastic policy gradient is redefined as: 

∇θU(θ) = Eτ∼pθ(τ)
[
Aθ(st , at)∇logpθ(τ)

]
(4)  

2.2.2. Proximal policy optimization 
Actor-Critic algorithm belongs to the policy gradient method, but the 

policy gradient method has inherent drawbacks, i.e., unstable training 
and difficult convergence of the algorithm. Proximal Policy Optimiza
tion [30] (PPO) solves the problem of learning step size in the policy 
gradient method and works well on high-dimensional decision optimi
zation problems. 

The PPO algorithm is based on the Actor-Critic framework and 
therefore consists of Actor and Critic, the theory is shown in Fig. 2. 
where there exists the current Actor(πθʹ) and the previous Actor (Old_
Actor(πθʹ)), Old_Actor interacts with the environment sampling trajec
tories (states, behaviors, rewards), and calculate the corresponding 
advantage function Aθ(st ,at). Actor is trained offline using the trajectory 
adopted by Old_Actor, and stochastic policy gradient of the PPO’s Actor 
update policy is defined as: 

∇θU(θ) = E(st ,at )∼πθ́

[
pθ(at |st)

pθʹ(at |st)
Aθʹ

(st , at)∇logpθ
(
an

t |s
n
t
)
]

(5) 

At this point, the objective function of PPO algorithm is Eq.6, and the 
optimal parameters are found by optimizing the objective function: 

Jθʹ
(θ) ≈ E(st ,at )∼πθʹ

[
pθ(at |st)

pθʹ(at |st)
Aθʹ

(st , at)

]

(6) 

Fig. 2. Theory of PPO algorithm.  
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PPO algorithm used in this paper is based on clipping method, where 
pθ(at |st )
pθ́ (at |st )

in the objective function are clipped, the upper and lower bounds 
are determined by ε. For updating Critic network, updating method is 
used like TDerror, and the gradient used for updating is defined as follows: 

L(ϕ) = −
∑

(st )

(
∑T

i=t
γi− tri − Vϕ(st)

)2

(7)  

3. Boiler performance modeling 

3.1. Description of the coal-fired boiler 

The data studied in this paper are derived from the original DCS 
historical data of 410 t/h pulverized coal boiler of a coal-fired unit in a 
thermal power plant from December 1, 2021 to January 1, 2022, con
taining a total of 44,623 operating conditions. 

Fig. 3 shows the schematic diagram of the thermal system of the case 
pulverized coal boiler. The system is mainly composed of steam ladle, 
water-cooled wall, each layer of burner, superheater, reheater, coal 
saver, air preheater, etc. The pulverized coal is preheated by the hot 
primary air, transported by the primary air to the furnace chamber for 
combustion, and completely burned to produce high-temperature flue 
gas by secondary air of each layer, separate over fire air (SOFA). Among 
them, the boiler is four-corner tangential circle combustion, using 
layered combustion system, burners are arranged in the four corners of 
the boiler, so that pulverized coal airflow in the furnace to form 
tangential circle combustion. A, B, C, D for four layers of secondary air; 

AA, BB, CC for three layers of primary air; E, F, G for three layers of 
separate over fire air (SOFA), led from the total secondary air duct; H is 
three air. The generated high temperature flue gas flows through the 
water-cooled wall, superheater, reheater, coal saver and air preheater in 
turn and then enters the flue gas super clean system. The saturated steam 
in the ladle becomes superheated steam through the superheater and is 
sent to the turbine to do work, and finally discharged to the condensing 
system to recover latent heat. 

3.2. Thermal efficiency 

For large power station pulverized coal boilers, boiler operation 
thermal efficiency has two calculation methods: positive balance 
method and counterbalance method. Among them, the positive balance 
method is relatively complex, requiring the calculation of the effective 
heat absorption of the mass in each process; the counter-balance method 
is relatively simple, from the point of view of the heat loss of thermal 
efficiency, the calculation formula is as follows: 

ηt = (1 −
Qloss

Qin
) × 100%

= 100 − q2 − q3 − q4 − q5 − q6

(8) 

In the above equation, Qloss indicates the total heat loss, accordingly, 
including exhaust heat loss q2, %, gas incomplete combustion heat loss 
q3, %, solid incomplete combustion heat loss q4, %, boiler heat loss q5, 
%, ash physical sensible heat loss q6, %. Qin indicates the amount of heat 
released from the fuel, kJ/kg. 

Fig. 3. Schematic diagram of the case four-corner cut circle pulverized coal boiler system.  
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3.3. Feature engineering 

3.3.1. Feature selection 
The input to the neural network should contain as many features as 

possible that are strongly correlated with the output target. When 
establishing the boiler performance index prediction model, the model 
input features can be screened according to the boiler combustion 
mechanism, Pearson correlation coefficient [6,16], gray relation anal
ysis (GRA) [16] or gradient enhancement tree [31], etc., and the features 
that are strongly correlated with the model performance index can be 
selected to improve the prediction performance of the model. 

Depending on the combustion principle, the combustion parameters 
affecting the thermal efficiency and NOx concentration of the boiler are 
selected as part of the model input characteristics. The secondary air has 
a large impact on both the concentration of raw generated NOx and the 
thermal efficiency of the boiler; the primary air mainly plays the role of 
preheating and conveying pulverized coal, providing the oxygen for the 
combustion, generally accounting for a small proportion of the total air 
volume, which has a small impact on NOx concentration and boiler 
thermal efficiency; the combustion exhaust air mainly plays the role of 
reducing the incomplete combustion products, which is part of the total 
secondary air, has a certain impact on NOx and boiler thermal efficiency; 
the total air volume determines the size of each layer of air, reacting 
through the flue gas oxygen content, which has a greater impact on NOx 
and thermal efficiency. 

The correlations between different input characteristics and thermal 
efficiency and NOx are different. In this paper, the Pearson and 
Spearman coefficients of all the input features of the initial screening 
with thermal efficiency and NOx are calculated. After the significance 
test, the Pearson and Spearman corresponding features with significance 
less than 0.01 are selected, and the features with absolute values of 
Person or Spearman coefficients greater than 0.2 are selected among the 
remaining features, the NOx model and the thermal efficiency model 
have a total number of 38 and 39 screening features. 

In the air-graded combustion of pulverized coal boiler, the secondary 
air volume, the combustion air volume and the total air volume can 
affect the thermal efficiency and NOx concentration of the boiler at the 
same time, and the effect of the combustion air swing opening is not 
considered because the variation of the SOFA nozzle swing openings in 
each layer of this boiler is not large and this is not conducive to data 
modeling. Finally, the final combustion adjustment parameters are 
determined by combining the mechanism screening (correlation prior
itization), specifically the 12 secondary air door openings (B-D) and flue 
gas oxygen content. 

3.3.2. Feature classification 
Due to the delayed nature of boiler combustion, there is a time 

correlation between some of the features and NOx and thermal effi
ciency, therefore, it is necessary to delay the features by a certain time 
series, i.e., sliding the features into the past by a certain time step to form 
a time series. Time lagged cross correlation [32,33] can be obtained by 
gradually sliding one of the time series and iteratively calculating the 
Person correlation coefficient between the two series. The time series 
sliding principle is shown in Fig. 4 (taking NOx as an example), and 
when the sliding time step is 1, the calculated Pearson correlation co
efficient is the correlation coefficient between the current NOx series and 
the characteristic series before a time step. 

Based on the screened input features, the NOx or thermal efficiency 
sequences are kept constant in this process, and the feature sequences 
are slid downward with an interval of 1 time step (1 min), and the 
calculated Pearson coefficients are absolute values, and the feature se
quences decrease more significantly with the increase of the sliding time 
step, implying that the correlation between the NOx sequences and 
thermal efficiency sequences at the current moment, and these feature 
sequences at the past moment is poor, indicating that such features are 
more suitable to be kept intact and considered as static features. The 

Fig. 4. Schematic diagram of time series.  

Table 1 
Feature classification results.   

Static Dynamic 

Feature 
category 

number Feature category number 

NOx model 
input feature 
classification 

Secondary air 
baffle 
Opening (A-D 
(#1-#4)) 

16 Primary air baffle 
Opening (AA(#1), 
BB(#1)) 

2 

Air preheater 
outlet 
flue 
temperature 

4 Load 1 

Primary air 
outlet 
temperature 
(AA(#1-#4), 
BB(#1,#2,#4)) 

6 Main steam 
pressure 

1 

Flue gas 
oxygenation 

2 Total air pressure 
(#1-#3) 

3   

Primary air 
temperature 

1   

Furnace outlet flue 
gas temperature 

1   

Primary air 
pressure (AA#3) 

1 

Total 28 Total 10 
Thermal 

efficiency 
model 
input feature 
classification 

Secondary air 
baffle 
Opening (B-D 
(#1-#4)) 

12 Primary air baffle 
Opening (AA(#1, 
#4),BB(#1,#4),CC 
(#4)) 

5 

Air preheater 
outlet 
flue 
temperature 

4 Load 1 

Primary air 
outlet 
temperature 
(AA-BB(#1- 
#4)) 

8 Main steam 
pressure 

1 

Flue gas 
oxygenation 

2 Total air pressure 
(#4) 

1 

Primary air 
mixing 
box 
temperature 

2 Furnace outlet flue 
gas temperature 

1   

SOFA dampers 
opening (E(#1, 
#2)) 

2 

total 28 total 11  
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correlation of other feature sequences with NOx and thermal efficiency is 
almost constant with the increase of sliding time step, which means that 
the correlation between NOx sequences at the current moment and these 
feature sequences at the past moment is still good, and such features can 
be input to the neural network for time-delayed serialization and can be 
regarded as dynamic features. The final classification results are shown 
in Table 1. 

3.4. Data preprocessing 

3.4.1. Exception handling 
There are a certain number of outliers in the original data. In this 

paper, the 3sigma criterion is used to eliminate the outliers, and the 
3sigma function is as follows: 

f(x) =

⎧
⎨

⎩

1, x < μ − 3σ

1, x > μ + 3σ

0, others

(9) 

In the above equation, x is the thermal efficiency or NOx value of the 
current operating condition of the boiler, μ and σ is the sample mean and 
sample standard deviation of the thermal efficiency or NOx. 1 indicates 
that the data is abnormal, and 0 indicates that the data is normal. 
Finally, 201 anomalies were eliminated from the 44,623 data. 

3.4.2. Standardization 
Raw data standardization is a necessary step in supervised learning 

regression modeling, and unifying the data to the same order of 
magnitude can facilitate model convergence and improve model pre
diction accuracy. In this paper, maximum-minimum normalization is 
used to convert all the features of the original data to the [0,1] interval, 
and when combining with the optimization algorithm to adjust the size 
of the feature value, it cannot exceed the [0,1] interval, so as to ensure 
that it is in the same data space. 

Xi =
Xi,max − Xi

Xi,max − Xi,min
(10) 

where Xi is an input feature,Xi,max and Xi,min are the maximum and 
minimum values of the feature. 

3.4.3. Feature serialization 
Dynamic features are considered to be time-delayed and need to be 

serialized. The so-called serialization is to form a time series by delaying 
the features by a certain time step, the dynamic features are delayed by 
the same time step, and the length of the sequence is 7. All the dynamic 
features are delayed and merged into a series, and the current moment is 
defined as follows: 

Fig. 5. Model training process.  

Fig. 6. Static-dynamic composite neural network model structure.  
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seriest =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

dt− step+1
i perf t− step+1

⋮ ⋮
dt− 1

i perf t− 1

dt
i perf t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, i ∈ [1, k] (11) 

where, dt
i denotes a certain dynamic feature at the current moment; k 

denotes the number of dynamic features (k = 11 for the thermal effi
ciency model and k = 10 for the NOx model); and perf is the performance 
metric, i.e., NOx or thermal efficiency itself. The predictions are for 
future performance metrics perf t+1, so the upper bound of the feature 
sequence is t-step + 1. 

3.4.4. Dataset creation 
Based on the original DCS data, the neural network model training 

dataset and test dataset were established. The dataset establishment 
process is shown in Fig. 5. First, the raw DCS data is anomalously pro
cessed and normalized. Second, 2000 (about 5 %) consecutive data are 
randomly selected from the normalized total dataset as the test set, and 
the remaining data are used as the training set. In this paper, we propose 
to build both the composite neural network model based on feature 
classification and the dynamic neural network model based on feature 
non-classification, so when building the dataset, the features are 
partially serialized or fully serialized according to the composite model 
or the dynamic model, respectively. Finally, the trained composite 
model and dynamic model are tested on the same test set. 

3.5. Boiler efficiency and NOx modeling 

The composite model considers feature classification, coupling the 
dynamic neural network with the static neural network structure to 
handle static and dynamic features separately. The final structure of the 
static-dynamic composite neural network model is shown in Fig. 6, 
where 3 layers of fully connected network layers (Dense) are stacked to 
form a BP static neural network structure to handle static features, and 2 

layers of 1D_CNN and 2 layers of LSTM are stacked to form a dynamic 
neural network structure to handle dynamic features. 1D_CNN first ex
tracts potential features from the time series and inputs the extracted 
feature sequences into the LSTM network layer for refinement. The static 
network structure and dynamic network structure are first decoupled 
and then coupled, connecting the output of the LSTM network at the 
current moment with the Dense layer and merging it with the final Dense 
layer of the BP network, and then stacking the Dense layers for transition 
after the merger, finally constituting a complete multi-input, single- 
output composite neural network structure. 

Since the number of static and dynamic input features of the thermal 
efficiency prediction model and the NOx prediction model are not very 
different, the two prediction models have the same composite neural 
network structure and hyperparameter settings, as shown in Table 2. 
Among them, the sliding window size of both 1D convolutional net
works is 2; the final Dense network layer of both static and dynamic 
network structures was L2 regularized to reduce the overfitting of the 
models. 

The dynamic neural network model is also built in this paper to 
constitute a comparison with the composite neural network model. The 
dynamic neural network model retains only the dynamic feature pro
cessing structure based on the conforming model, i.e., two layers of 
1D_CNN and 2 layers of LSTM, and two layers of Dense network for 
transition in the tail, and the final dynamic neural network model 
structure is shown in Fig. 7. 

Although the dynamic model has the same dynamic feature pro
cessing structure as the composite model, the number of input dynamic 
features is increased due to the complete serialization of the dynamic 
model based on features, so the hyperparameters of the dynamic neural 
network need to be redefined to increase the weight dimension of the 
network or the number of convolution kernels to ensure the same 
learning capability. The hyperparameters of the established boiler 
thermal efficiency and NOx dynamic neural network prediction model 
are defined as shown in Table 3. 

The model uses the Adam optimization algorithm to update the 
network parameters based on the gradient. The model training method 
is small batch training, which is executed according to the built-in 
function of Tensorflow. Randomly selected data from the batch were 
fed into the neural network with a batch size of 128. 20 % of the data in 
the training set was randomly used as a validation set to observe 

Table 2 
Parameter definition of composite model.  

Hidden layer 
structure 

Weighting 
dimension 

Activation 
function 

Thermal 
efficiency 
model training 
weights 

NOx model 
training 
weights      

Static Dense 128 Relu 3712 3712 
Dense 64 Relu 8256 8256 
Dense 64 Relu 4160  

Dynamic 1D_CNN 64 Relu 1472 1344 
1D_CNN 64 Relu 8256 8256 
LSTM 64 / 33,024 33,024 
LSTM 64 / 33,024 33,024 
Dense 64 Relu 4160 4160 

Public Dense 128 Relu 16,512 16,512    
Total 112,576 112,448  

Fig. 7. Dynamic neural network model structure.  

Table 3 
Parameter definition of dynamic model.  

Hidden layer structure Weighting 
dimension 

Thermal efficiency 
model training weights 

NOx model 
training weights 

1D_CNN 128 10,112 9856 
1D_CNN 64 16,448 16,448 
LSTM 64 33,024 33,024 
LSTM 64 33,024 33,024 
Dense 128 8320 8320 
Dense 128 16,512 16,512  

Total 117,440 117,184  
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whether the model was overfitting. The total number of cycles of model 
training (max_epochs) was 500, and the model training was set to stop 
training early. After each round of training, the model would calculate 
the mean square error on the validation set (Val_MSE), the definition is 
as follows. When the number of times that the increase of Val_MSE was 
not more than 0.0001 consecutively exceeded 80 rounds, it was deter
mined that the model was no longer optimized, and the training was 
stopped at this time to prevent the model from over-training and over
fitting. The model parameters with the smallest Val_MSE were saved 
during training. 

Val MSE =
1
n
∑n

i=1

(
yʹ

i − yi
)2 (12) 

where, yʹ
i is the model predicted value; yi is the sample true value; n is 

the number of samples in the test set. 
Eventually, the changes in the mean square error of the validation set 

during training of the composite and dynamic models are shown in 
Fig. 8. The VAL_MSE of both models on the validation set decreases 
rapidly and then remains almost constant without obvious signs of 
rebound, indicating that the models converge and do not show obvious 
signs of overfitting under the effect of L2 regularization and early 
stopping of training. 

3.6. Superiority discussion 

3.6.1. Comparison of predicting performance 
Root mean square error (RMSE) is the standard deviation of the 

prediction error and is defined as in Eq.8. RMSE is more sensitive to 
larger errors in the sample, and the smaller RMSE, the better compre
hensive performance of the model prediction: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yʹ

i − yi
)2

√

(13) 

where yʹ
i is the model prediction value; yi is the sample true value; n is 

the number of samples in the test set. 
In this paper, the dynamic neural network model and the composite 

neural network model built are trained with the same training set and 
tested in the same test set after training, and the comparison of the 
prediction performance of the composite model and the dynamic model 
is shown in Fig. 9 and Fig. 10. As shown in Fig. 9, the two models have 
little difference in the prediction of the true thermal efficiency and NOx 

Fig. 8. All model training losses.  

Fig. 9. Comparison of the prediction results of composite model and dynamic model.  
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concentration values, and both can achieve better online and dynamic 
prediction at different loads. As shown in the RMSE of Table 4, the 
prediction performance of the composite model and the dynamic model 
are not very different, and the composite model predicts NOx slightly 
worse, and this can also be seen from the comparison of the actual 
regression line with the ideal regression line in Fig. 10, the prediction 
points of the NOx composite model are a bit more divergent around the 
ideal regression line compared to the dynamic model. 

The RMSE evaluation index of the composite model is shown in 
Table 5. Since there are no explicit upper and lower bounds for RMSE for 
comparison, some relevant literature results are selected for comparison 
in this paper. It can be seen that the accuracy of the thermal efficiency 
and NOx prediction model is not much different from the literature re
sults, and the RMSE of the model on the test set is smaller, for the 
thermal efficiency model, the RMSE is 0.063 %; for the NOx model, the 
RMSE is 9.28 mg/m3, indicating that the thermal efficiency and NOx 
prediction model constructed in this paper has reached the accuracy 
requirements for further combining with the optimization algorithm, 
and thus it can be carried out boiler combustion optimization study. 

3.6.2. Comparison of combustion optimization performance 
To compare the performance of the dynamic and composite models 

on the combustion optimization task in combination with the optimi
zation algorithm, this paper references to the relevant research [3,4], 
and couples GA with the composite prediction model built in the pre
vious paper to establish the boiler combustion optimization algorithm, 
and tests the optimization on the same 30 operating conditions. GA is 
responsible for generating the initial solution set (population), which 

contains one individual that is decoded into a combustion adjustment 
scheme, including 13 adjustment ranges of combustion adjustment pa
rameters. Since the data are pre-normalized, the upper and lower 
bounds of the 13 adjustment magnitudes are the same, with the lower 
bound being − 16.7 % and the upper bound being 16.7 % (Limits the 
range of combustion adjustments to ensure that single-step adjustments 
are not too large). The population size was 150 and the individual 
coding method was Gray coding. 

The fitness function f(et+1, et , nt+1, nt , action) is defined as follows: 

Max f =

⎧
⎨

⎩

1 + 10ρe − 0.01
∑n

j=1
Δactiont

j , ρe⩾1%, ρn < 0

− 1, others
(14)  

ρe =
et+1 − et

et , et ∕= 0

ρn =
nt+1 − nt

nt− 1 , nt ∕= 0

s.t. −
1
6
< Δactiont

j <
1
6

(15) 

where et and et+1 denote thermal efficiency before and after com
bustion adjustment,nt and nt+1 denote NOx concentration before and 
after combustion adjustment,et+1 and nt+1 are obtained by applying the 
action to the optimized conditions and inputting the thermal efficiency 
and NOx prediction model,ρe and ρn denote the relative increase of 
thermal efficiency and the relative increase of NOx concentration, action 
is a behavior vector, representing an individual in GA and a burn 
adjustment scheme, including 13 adjustment range Δactionj, defined as: 

action = {Δaction1,Δaction2, ...,Δaction13} (16) 

The GA algorithm performs individual selection based on the fitness 
values of the individuals in the population, followed by crossover, mu
tation and retention of historical elite individuals to form a new popu
lation of the next generation, completing one population iteration. After 
several iterations, the individuals in the GA population are optimized, 
and the individual that can make the fitness value reach the global op
timum is finally selected as the optimal combustion adjustment scheme 
under the current boiler operating conditions to be optimized. In this 
paper, the stopping condition of GA is set to reach the maximum number 
of population iterations of 80 rounds. 

The boiler combustion optimization in this paper takes boiler energy 
saving as the overall goal, and improves boiler thermal efficiency 
without affecting NOx or even emission reduction. A thermal efficiency 
optimization benchmark of 1 % is set, and when the relative increase in 
thermal efficiency is greater than 1 % and the relative increase in NOx is 
less than 0, it is determined that the boiler thermal efficiency has been 

Fig. 10. Comparison of actual and ideal regression lines for composite and dynamic model.  

Table 4 
Composite model vs. dynamic model (performance comparison).   

Thermal efficiency predict model NOx predict model   

RMSE (%)  RMSE (mg/m3) 
Dynamic model  0.062  8.22 
Composite model  0.063  9.28  

Table 5 
Composite model vs. Literature (RMSE).  

NOx model RMSE (mg/m3) Thermal efficiency model RMSE (%) 

Composite model 9.28 Composite model 0.063 

Literature [6](LSSVM）  3.94 Literature [21](LSSVM)  0.094 
Literature [11](ELM)  7.88 Literature [23](LSSVM)  1.510 
Literature [9](SVM)  8.67 Literature[14](LSTM + 1D_CNN)  0.140  
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optimized and has no effect on NOx generation. At the same time, setting 
a benchmark of 1 % reduces the impact of model prediction errors. 
When the boiler performance is deemed optimized, the fitness value is 
positive and the sum of the combustion adjustments is imposed as a 
penalty for over-adjustment. Other cases are considered not optimized 

and the fitness value is negative. 
The optimal individual fitness value derived from GA based on the 

dynamic model is basically negative in Fig. 11. Compared with the 
composite model based on GA that achieves 30 % of the thermal effi
ciency optimization of the operating conditions, dynamic model based 
on GA achieves only about 16 % of the thermal efficiency optimization 
of the operating conditions, and the optimization divergence is rela
tively high. In addition, for the successful combustion optimization 
conditions, the thermal efficiency increase based on the composite 
model is 2–28 % higher than that of the dynamic model, indicating that 
the optimization effect of the GA algorithm based on the dynamic model 
is relatively poorer when successfully optimized, specifically the ther
mal efficiency increase is relatively low. 

4. Optimization of boiler combustion 

4.1. Construction of combustion optimization policy 

As can be seen in Fig. 12, boiler combustion online optimization 
strategy consists of PPO algorithm coupled with composite prediction 
model. Reinforcement learning environment constructed from thermal 
efficiency and NOx prediction models that give states, complete state 
transitions and give immediate rewards; PPO acts as a reinforcement 
learning intelligence, initializing the boiler combustion optimization 
strategy by constructing an Actor neural network, giving the corre
sponding combustion adjustment scheme by the strategy according to 
the boiler operation status; PPO agent trains Actor based on the 

Fig. 11. Comparison of optimization effect of composite model and dynamic 
model combined with GA. 

Fig. 12. Composite prediction model and PPO algorithm coupling framework.  
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extensive experience of interacting with the environment, finally 
enabling the boiler combustion optimization strategy to complete the 
training. Trained strategies can be used directly for boiler operation 
conditions that the agent have never seen before, providing combustion 
optimization tuning solutions online. 

4.1.1. Reinforcement learning environment 
Reinforcement learning environment simulates the real environment 

of boiler combustion, the boiler operation state needs to be accurately 
transitioned next state according to the combustion adjustment scheme, 
and gives the reward corresponding to the scheme. 

The initial state set of boiler operation is the operating load interval 
[332 t/h, 362 t/h] with a size of 28097, selecting 20 % (5619) as the test 
state set and the remaining 80 % as the training state set. When PPO 
agent interact with the environment, the environment selects randomly 
from the training state set as the initial state; when testing the trained 
combustion optimization strategy, the environment selects the initial 
state from the test state set in order. 

Environment to state transition is mainly referred to the related 
literature [14]. In Fig. 13, for a random initial state [seriest , statict ] at the 
current moment t, states are merged into the PPO after which the current 
combustion adjustment scheme actiont is obtained and the combustion 
adjustment parameters are applied to the initial state, then static feature 
statict transitions to statict+1. The state [seriest , statict ] after applying the 
combustion adjustment scheme is fed into the thermal efficiency and 
NOx prediction model to obtain eff t+1 and NOt+1

x , and this is used to 
update the thermal efficiency and NOx performance parameter 
sequence,so that the dynamic characteristics seriest transitions to 
seriest+1, 

seriest+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

dt− step+1
i perf t− step+2

⋮ ⋮
dt− 1

i perf t

dt
i perf t+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i ∈ [1, k] (17)  

statict+1 = (ct
j(1 + Δactiont

j), x
t
l), j ∈ [1, n], l ∈ [1, p] (18)  

where Δactiont
j is adjustment range for adjustment parameter with upper 

and lower bounds, set to [-16.7 %,16.7 %] in the same way as GA. 
The environment outputs the reward value corresponding to the 

Fig. 13. Environment-to-state transition.  

Table 6a 
Actor and Critic neural network structure.   

Network 
structure 

Weighting 
dimension 

Activation function 

Static feature 
processing 

Dense 256 tanh 

Dynamic feature 
processing 

1D_CNN 64 tanh 
1D_MaxPool / / 
1D_CNN 64 tanh 
1D_MaxPool / / 
Flatten / / 

Merger Dense 128 tanh 
Output Dense Actor (13)； 

Critic (1) 
Actor (tanh)；Critic 
(None)  

Fig. 14. Actual thermal efficiency and NOx concentration change after policy 
optimization. 
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Fig. 15. Combustion adjustments proposed by the strategy for different test conditions.  

X. Wu et al.                                                                                                                                                                                                                                      



Applied Thermal Engineering 254 (2024) 123857

14

behavior based on the current state and the behavior derived from the 
PPO, and the reward function R(et+1, et , nt+1, nt , action) is the same as GA 
fitness function built in the previous section. 

4.1.2. PPO agent 
Although PPO contains two Actor networks in principle, there is no 

difference between the two networks in terms of structure, only the 
difference of successive calls, so only one Actor network and one Critic 
network need to be built. The initialization of the Actor neural network 
is to complete the parameterization of the boiler combustion optimiza
tion strategy. 

Actor network input is the state, the advantage function and the 
previous output value actionold, the output is the combustion adjustment 
scheme action, containing the adjustment magnitude of 13 combustion 
adjustment parameters Δactionj. the Critic network input is the state and 
the output is a state value function. Actor and Critic network structures 
are based on the constructed NOx and thermal efficiency prediction 
models, and the network structures are shown in Table 6a. 1D_CNN and 

1D_MaxPooling are used for dynamic features, and the sliding window 
size is 2; 1-layer Dense is used for static features. Finally, the Actor 
network output is activated using the tanh function so that the action is 
in the interval [-1, 1] and subsequently narrowed to [-1/6, 1/6]; the 
Critic network output has no activation function. 

4.2. Offline policy training 

The number of rounds of interaction between the algorithm and the 
environment EPISODES is 5 million, and the trajectory length obtained 
from each round of interaction tra is 4, so the number of interactions 
between the algorithm and the environment is 20 million. Before each 
policy training, the interaction experience is saved by buffer with a size 
of 2048 (buffer_size). Actor network and Critic network training epoch is 
10, training size is 256 (batch_size), learning rate is 0.0001, and opti
mizer both use Adam algorithm. The hyperparameters of the other PPO 
algorithms are defined as in the original algorithm [30]. 

After the environment and the agent are built, the training of com
bustion optimization strategies is then carried out. The boiler combus
tion optimization strategy training is shown as follows.  

Burning optimization strategy training algorithm 

Initialize episode = 0; 
While episode ≤ EPISODES do 
Randomly initialize buffer, used to save state, current action, past action actionold and 
discount rewards Rdis; 
Initialize i = 0; 
While i ≤ buffer_szie do 
Randomly initialize statet , then transition to statet+1 according to Actor, and output 
rewards Rt; Multiple interactions until track length is reached, episode += 1; 
Calculate the cumulative discounted rewards of the remaining trajectories at each 
moment Rdis;  
End while 
The experiences in buffer are fed into the Critic and then calculate advantage 
function. Inputting all experiences and advantage functions into the Actor and 
Critic, calculating the gradient according to PPO algorithm, and Adam algorithm 
trains network parameters according to the gradient; 
Recording Actor network losses and Critic network losses; 
End while  

4.3. Online optimizing simulation 

4.3.1. Promotion of boiler performance 
Fig. 14 shows thermal efficiency and NOx increasement for all tested 

Table 6b 
Combustion adjustment scheme for maximum increase in thermal efficiency.  

Δa1 Δa2 Δa3 Δa4 Δa5 Δa6 Δa7 Δa8 Δa9 Δa10 Δa11 Δa12 Δa13  

0.06  − 0.14  − 0.16  − 0.16  − 0.16  0.14  − 0.16  − 0.16  − 0.16  − 0.15  − 0.16  0.16  0.16  

Fig. 16. Comparison of reward values obtained by the strategy and GA.  

Fig. 17. Thermal efficiency and NOx changes after optimization by strategy and GA.  
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conditions, and effective optimization percentage of thermal efficiency 
improvement and NOx reduction (Δeff > 0,ΔNOx < 0) is 63.5 %. After 
the single-step combustion adjustment, thermal efficiency increasement 
ranges of 0–0.61 % and NOx reduction ranges of 0–65 mg/m3, and 
certain optimization can be achieved under different load conditions. It 
shows that the optimization of thermal efficiency and NOx is better when 
the combustion optimization strategy is applied to new boiler operating 
conditions. 

Fig. 15 shows the variation of the flue gas oxygen content and the 
adjustment magnitude of the 12 secondary damper openings corre
sponding to all the successfully optimized combustion conditions out of 
the 5619 test conditions. It can be seen that the magnitude of most of the 
adjustment amplitudes varies with different test cases, and only a few of 
the adjustment amplitudes reach the boundary, such as the secondary 
damper openings (layer D #3) and secondary damper openings (layer B 
#2), and almost remain the same in each test case. Since the sample of 
test conditions is large, it can be considered that the strategy is more 
effective in combustion optimization in a small range, and the proposed 
combustion adjustment scheme is not easy to be affected by the artifi
cially set adjustment boundary. 

In addition, individual combustion tuning scenarios are analyzed. 
For example, for the case with the greatest optimization of thermal ef
ficiency, the combustion adjustment scheme is shown in Table 6b. It can 
be seen thatΔa1 > 0, indicating a slight increase in the total air volume; 
Δa2 toΔa5 < 0, indicating a decrease in the secondary air volume of 
layer D (#1-#4); layer C (#1-#4) secondary air volume is also reduced, 
but less compared to layer D; and the secondary air volume of layer B 
(#1-#4) is almost unchanged. At this time, the secondary air volume in 
the graded combustion area is reduced, and the oxygen concentration is 
reduced to inhibit the generation of NOx. At the same time, the pro
portion of secondary air volume in the lower level is still large, and the 
air distribution is still in a positive tower shape, thus favoring the 
combustion of coal dust. The increase of total air volume and the 
decrease of secondary air volume imply that the degree of pulverized 
coal combustion can be further improved by increasing the combustion 
air volume, thus improving the thermal efficiency. Therefore, to a 
certain extent, the combustion adjustment program derived from the 
algorithm is more in line with the actual combustion adjustment rule. 

4.3.2. Comparison with GA 
To compare the combustion optimization strategy based on the PPO 

algorithm with GA randomly selects 30 states from the test state set and 
perform combustion optimization for these conditions using GA, and 
couples the composite model, the results are as follows. 

Fig. 16 shows that the combustion tuning schemes derived from the 
strategy and GA successfully optimized most of the 30 test conditions, 
and reward values obtained by combustion tuning schemes is not 
different, so it is difficult to distinguish between good and bad optimi
zation effects. 

As shown in the right of the Fig. 17, combustion optimization 
strategy based on PPO does not differ much from GA in terms of the 
degree of thermal efficiency optimization for the working conditions. 
For nearly half of the working conditions, the optimization effect is 
better after applying the combustion adjustment scheme proposed by 
the strategy, and the remaining half of the working conditions are better 
after applying the combustion adjustment scheme of GA. However, as 
shown in the right of the Fig. 16, the difference between the two for NOx 
reduction is large, and the strategy is significantly stronger than GA for 
NOx concentration reduction. With the same fitness function and reward 
function, GA is almost difficult to optimize for NOx, and only ensures 
NOx no growth. 

Furthermore, in terms of decision speed, the combustion optimiza
tion strategy based on the PPO algorithm can be considered as an online 
combustion optimization strategy because it is pre-trained offline 
without further iterative operations, and the single decision is almost 
instantaneous with an average time of 0.015 s,but GA takes about 3 min 

on average for a single optimization, and it is still difficult to achieve 
online decision making for variable boiler operating conditions 
compared to the combustion optimization strategy based on the PPO 
algorithm. 

5. Conclusion 

In this paper, a combustion optimization study is carried out for a 
410 t/h quadrangular cut-round pulverized coal boiler, and the dynamic 
prediction model of boiler thermal efficiency and NOx is established by 
using LSTM and 1D_CNN neural network for the problem that the static 
model is limited to the optimization of steady-state conditions. To 
optimize the general dynamic model combined with the optimization 
algorithm to establish online combustion optimization algorithm, this 
paper classifies the model input features, couples the dynamic model 
with BP neural network, and establishes a static-dynamic composite 
prediction model. To address the problem of slow speed of traditional 
heuristic optimization algorithm which is difficult to meet the speed of 
online optimization, this paper couples the composite prediction model 
with PPO reinforcement learning algorithm to establish an online opti
mization strategy for boiler combustion. Through the experimental 
validation of 5619 test cases, the strategy successfully achieves 63.5 % 
co-optimization of NOx and thermal efficiency, with thermal efficiency 
increase ranging from 0-0.61 % and NOx reduction ranging from 0-65 
mg/m3. Meanwhile, comparing the optimization effect of the PPO al
gorithm with that of the GA shows that the PPO strategy has a more 
significant effect on NOx reduction while keeping the thermal efficiency 
optimized. Moreover, the online decision-making speed of the PPO 
strategy is much higher than that of the GA, with an average time 
consumption of only 0.015 s, while the GA requires about 3 min for a 
single optimization. The offline trained strategy can be directly applied 
to real-time boiler operating conditions and output combustion opti
mization scheme online to guide operators in real time to optimize boiler 
thermal efficiency and NOx emission. 
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