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Abstract

Relating the complex structures of electrodes to their charging dynamics is crucial for

optimizing supercapacitors, which remains an experimental and theoretical challenge.

Here, we construct a pore network model (PNM) that can be downward-transformed

into a well-known transmission-line model and a stack-electrode model to describe

the disordered porous structure of carbon-based electrodes. A mathematical expres-

sion is derived using an equivalent circuit model of the PNM to quantify the relaxa-

tion times of the potential and concentration. The expression is then verified using

numerical solutions based on the simplified Poisson–Nernst–Planck equations and

experimental data. The structure of the PNM for experimental verification is directly

extracted from a porous electrode reconstructed using a scanning electron microscopic

image. A self-driven optimization framework is proposed by coupling the derived expres-

sion with a genetic algorithm to generate an optimal porous structure that can be used

to investigate the changing dynamics of the electrode. Our framework provides a general

image–structure–performance optimization platform for understanding and accelerating

charging dynamics in porous electrodes.
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charging dynamics, pore network model, porous electrode, relaxation time, structure
optimization

1 | INTRODUCTION

Supercapacitors have attracted tremendous attention because of their

high power density, excellent stability, and long cycling life compared

with batteries; given these characteristics, these devices show great

potential for use in portable electronics, green grids, and hybrid

vehicles.1–3 Many porous carbon-based materials have been employed

as electrodes in commercial supercapacitors owing to their low cost,

convenient preparation, and large specific surface area.4 However, the

relationship between the disordered microscopic structure of porous

carbon-based electrodes and the charging dynamics of macroscopic

supercapacitors is poorly understood, rendering the rational design of

supercapacitors with higher performance difficult.1,5 The relaxation

time τ is a physical quantity that is widely used to evaluate the

charging dynamics and represents the time scale at which the charge,

potential, or concentration reaches equilibrium.5–10 Naturally, a

shorter τ suggests increased charging efficiency. In general, the charg-

ing process of supercapacitors can be described by two types of

τ5,11,12: the relaxation time of the potential τϕ and the relaxation time

of the concentration τc. τϕ and τc represent the time scales at which

the charging process is controlled by electric double layer (EDL) for-

mation and ionic diffusion from the bulk to pores, respectively.

Currently, different methods exist for investigating the charging

dynamics in porous electrodes: experiments,13,14 molecular dynamics

(MD) simulations,15,16 and continuum modeling17,18; these methods

can elucidate the buildup of EDLs at the electrode/electrolyte interface

and the charging mechanisms in a few nanopores as well as in disor-

dered carbon materials. Song and Bazant19 developed a mathematical
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framework to calculate the diffusion time by analyzing the electrochemical

impedance spectra and inferring the microstructural statistics of random

heterogeneous materials. Several porous electrode models have been pro-

posed for studying ion transport and calculating τϕ and τc. The validity of

the transmission-line (TL) model pioneered by De Levie20 for charac-

terizing charging dynamics has been confirmed by many relevant

studies.21–23 For example, using direct numerical calculations of the

Poisson–Nernst–Planck (PNP) equations and TL theory, Gupta et al.22

studied the charging dynamics of overlapping double layers in a cylin-

drical nanopore and derived an expression for τϕ. Janssen
24 extended

the TL model for charging an electrolyte-filled nanopore of finite

length to discuss the intimate relationship between τϕ and the bulk

phase. Mirzadeh et al.23 derived a new and effective TL model that

incorporates surface conduction and connectivity to quantitatively capture

the results of the PNP equations. Bazant et al.25,26 proposed a porous

electrode model that can describe both the micropores inside and the

macropores outside a particle, and this model has been widely applied to

study the charging dynamics in porous electrodes.27,28 A stack-electrode

(SE) model5,29,30 was recently proposed to successfully bridge the gap

between theoretically predicted and experimentally measured τϕ and τc.

Based on the charging dynamics in individual pores determined using

MD simulations,11,31–33 effective medium approximation (EMA) can

be used to reveal the influences of the pore size distribution and pore

connectivity on the charging process of porous electrodes.34,35 For

example, Henrique et al.36 derived a phenomenological expression for

average τϕ as a function of the pore size distribution.

Although the τϕ and τc in porous carbon-based electrodes can

be easily obtained using the above models with different accuracy

levels and calculation costs, these models cannot solve the follow-

ing two issues simultaneously. First, the real disordered porous

structure cannot be intuitively and accurately described using

a model. Second, how to quickly calculate τϕ and τc using a model

and achieve the rapid screening and optimization of porous electrodes is

yet unknown. Therefore, a new model based on the above-constructed

models is urgently required to more accurately describe and comprehen-

sively optimize the charging dynamics in porous carbon-based electrodes.

In this study, a pore network model (PNM) is introduced to

address the above two issues simultaneously, and a self-driven optimi-

zation framework is proposed to accelerate the charging dynamics in

porous carbon-based electrodes, as shown in Figure 1. The PNM has

been applied to the exact modeling of electrochemical devices such as

shock electrodialysis,37 Li-ion batteries,38 flow batteries,39 and super-

capacitors.40 We first proved that the PNM can be easily transformed

into the TL and SE models by simplifying its topological structures and

geometries. Then, the τϕ and τc in the PNM were numerically calcu-

lated using the simplified PNP equations and analytically assessed

using an equivalent circuit model (ECM). Subsequently, a PNM

extracted from a scanning electron microscopic (SEM) image was con-

structed to verify the analytical solution of τϕ using experimental data.

Finally, the optimal pore size distribution of the PNM was revealed

using our proposed self-driven optimization framework to accelerate

the charging dynamics in porous carbon-based electrodes and guide

the design of electrode structures.

2 | RESULTS

2.1 | Relation between the PNM and traditional
models

The PNM treats a porous electrode as an ordered or disordered pore

network consisting of many different spherical pores and cylindrical

throats,41 as shown in Figure S1a. The geometries and topological

structures of the PNM can be directly extracted from a real porous

electrode or easily constructed by setting the appropriate structural

parameters (Section 4.1.1). Notably, unlike that in the TL and SE

models, the bulk phase in the PNM is divided into many cubes to

reflect the complex connections between the bulk phase and elec-

trode pores. However, owing to these complex structures, the partial

differential equations in the PNM are difficult to solve rapidly using

numerical methods. Therefore, we constructed an ECM of the PNM

to calculate τϕ and τc, as shown in Figure S1b. In the ECM, the nodes

represent the bulk phase and pores of porous electrodes, and the lines

denote the connections between nodes. The charging relaxation

response of a supercapacitor can be modeled using different combina-

tions of capacitors and resistors. The capacitance represents the

energy storage capacity of a pore, and the resistance represents

the difficulty of ion transport in the pores and bulk phase.

Two generic expressions for τϕ and τc are analytically derived

based on the ECM (Section 4.1.4). Unlike τϕ, τc cannot be

derived using the traditional ECM. In this study, we obtained an

expression of τc by extending the physical meanings of capacitors and

resistors in the ECM. The derived expressions demonstrate that τϕ

and τc are the second-smallest eigenvalues λmin2 of matrices M n�nð Þ
and N n�nð Þ, respectively:

τϕ,ECM ¼ 1

min2 eig M n�nð Þ
� �� �¼ 1

min2 eig C�1
n�nð ÞL

GΩð Þ
n�nð Þ

� �� � , ð1aÞ

τc,ECM ¼ 1

min2 eig N n�nð Þ
� �� �¼ 1

min2 eig V�1
n�nð ÞL

Gdð Þ
n�nð Þ

� �� � , ð1bÞ

where min2ðÞ is the function of the second-smallest value, eigðÞ is

the function of the eigenvalues of the matrix, and �1 is the operator

that inverts the matrix. C n�nð Þ and V n�nð Þ are diagonal matrices

with the weights of each pore's capacitance C and volume V, respec-

tively. LG
Ω

n�nð Þ and LG
d

n�nð Þ are Laplacian matrices with the weights of each

throat's ionic conductance GΩ and diffusive conductance Gd, respec-

tively. M n�nð Þ and N n�nð Þ contain all the heterogeneous structural

parameters of the pore network, including the position, connectiv-

ity, and geometric parameters of individual pores and throats as

well as some properties of the electrolyte, including the initial

concentration and diffusion coefficient of ions. The expressions

of C, GΩ, and Gd are detailed in Equation (3). Interestingly,

Equation (1) indicates that τϕ and τc have similar forms, which inspires

us to believe that the relaxation time of temperature τT can be

obtained in the same manner.30
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The PNM can be downward-transformed into the TL and SE

models by simplifying the topological structure and geometry, as

shown in Figure S1c,d. Therefore, τϕ and τc in the TL and SE models

can be calculated using Equation (1) by taking the corresponding C,

GΩ, and Gd, as listed in Table S1. For example, based on the TL model,

Mirzadeh et al.23 simplified a disordered porous structure into a cylin-

drical pore with a sectional area A, sectional perimeter P, and length L

by considering that ions are transported along the axial direction of

the cylindrical pore and adsorbed on the pore wall to form an EDL. The

expression of τϕ derived from the TL model is τϕ,TL ¼ PL
A τRC, where τRC

is the charging τ of the plate electrode. In the SE model, the porous

electrode is simplified into n infinitely large plate electrodes stacked in

parallel,5 and the gap between plates is considered the average pore

size h. The thickness of the porous electrode is H¼ n�1ð Þh and the

length of the bulk phase is 2L. Ions can be transported through the

plate or adsorbed on either side of it. The expression of τϕ,SE derived

from the SE model is τϕ,SE ¼ 2þ0:75H
L

� �
n�1�0:91H

L

� �
τRC. However,

the TL and SE models ignore the microscopic disordered details of the

topological structure and geometries of disordered carbon-based elec-

trodes. For the EMA, the topological structure is approximately

replaced by a mathematical expression of a single pore to represent

the disordered porous structure on a statistical level, considering only

the influence of connectivity and pore size distribution, as shown in

Figure S1e. The PNM can be simplified into an EMA when the bulk

phase and heterogeneous details of the electrodes are ignored.

2.2 | Relaxation times from the PNM

The simplified PNP equations are used to numerically solve the distri-

butions of potential ϕ and ionic concentration c in the PNM during

the charging process (Section 4.1.2) and calculate τϕ and τc from the

numerical results (Section 4.1.3). To visualize the numerical results, we

selected four snapshots of the potential distribution at 0,0:1,1,10f gτϕ
and concentration distribution at 0,0:1,1,10f gτc, as shown in

Figure 2A,B. At time t¼0 s, a potential difference 2Ψ is applied to the

F IGURE 1 Self-driven optimization framework for investigating the charging dynamics in porous electrodes. The simulated annealing
algorithm is first used to reconstruct the three-dimensional structure of a porous carbon-based electrode from a two-dimensional scanning
electron microscopic (SEM) image of a supercapacitor. The pore network of the pore phase is then extracted from the reconstructed electrode
using the maximal ball algorithm. Subsequently, the pore network model of the supercapacitor, which contains two porous carbon-based
electrodes and a bulk phase, is constructed based on the extracted pore network. The relaxation time τ expressions are derived using an
equivalent circuit model of the pore network model (PNM) to accurately and rapidly characterize the time scale at which the charge, potential, or
concentration reaches equilibrium. Finally, the genetic algorithm and derived expression are combined to automatically search the minimum τ by
optimizing the geometries and topological structure of the PNM to accelerate the charging dynamics in porous electrodes.
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cathode and anode of the supercapacitor with a homogeneous ionic

concentration c0. Over time, the counterions are adsorbed onto the

electrode surface whereas the co-ions are repulsed such that EDLs

gradually form. These EDLs screen the surface potentials, leading to

electroneutrality. Meanwhile, ions from the bulk electrolyte enter the

porous electrode to gradually replenish the ions adsorbed by the sur-

face. The potential at 0:1τϕ and concentration at 0:1τc are far from

equilibrium, whereas the potential at 10τϕ and concentration at 10τc

are in equilibrium. Therefore, τϕ and τc can represent the time scales

at which the potential and concentration reach equilibrium.

Figure S2a,b illustrate that the variations in ϕ and c obtained by the

PNM show complex behaviors rather than an exponential relation, as

commonly reported.5 This anomalous phenomenon is ascribed to the

disordered structure of the carbon-based porous electrodes and mass

transport between pores.

Supporting Information Material Section S2 discusses the

effects of the parameters of disordered porous structures on τϕ

and τc, which are ignored in the TL model, SE model and EMA. We

adopted the numerical solutions to ensure higher accuracy for τϕ and

τc. The studied structural parameters include the standard deviation

of the pore size σ (i.e., the disorder of the pore size), the average con-

nectivity of the electrode Z, and the pore arrangement controlled by

random seed ω (i.e., the microscopic surface topography). When σ¼0,

Zcathode ¼Zanode ¼2, and the pore arrangement is ignored, the results

of the PNM can be regarded as those of the TL model, SE model,

and EMA. These results show that σ has great positive influences

F IGURE 2 Relaxation process and relaxation times τ. (A, B) Snapshots of the potential distribution at 0,0:1,1,10f gτϕ and concentration
distribution at 0,0:1,1,10f gτc, where τϕ and τc are the τ of the potential and concentration, respectively. (C, E) Comparison between the
analytical solutions τECM obtained from the pore network model (PNM)-derived equivalent circuit model (ECM) and numerical solutions τsPNP

calculated using the simplified Poisson–Nernst–Planck (PNP) equations. (D, F) Distributions of the absolute values of the relative errors of ECM
δ¼ τECM� τsPNPð Þ=τsPNPj j. (G, H) Comparison between the time costs of the PNM-derived ECM and the simplified PNP equations.
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on τϕ and τc, indicating that a disordered pore size distribution results

in slow charging dynamics. Moreover, as both Zcathode and Zanode

increase, τϕ and τc first decrease sharply until Zcathode ¼Zanode, after

which their rate of descent slows. More interestingly, even when

σ and Z are held constant, the pore arrangement exerts significant

influences on τϕ and τc. Specifically, the distribution of 500 types

of pore arrangements in electrodes of the same size indicates that

the maximum τϕ and τc are over two times greater than the minimum

values.

In Figure 2C–H, we compare the analytical solutions τECM

(i.e., Equation 1) derived by the ECM and the numerical solutions

τsPNP (i.e., Equation 5) calculated using the simplified PNP equations

in terms of accuracy and time cost. Figure 2C,E shows the distribution

of points; here, the abscissa is τECM and the ordinate is τsPNM.

The points are evenly distributed on both sides of y¼ x. Specifically,

most of the absolute values of the relative error δ of the ECM are

less than 1 for both τϕ and τc, where δ¼ τECM� τsPNPð Þ=τsPNPj j, as
shown in Figure 2D,F. Therefore, τϕ and τc could be calculated by

Equation (1) with high accuracy. More importantly, the time cost of the

ECM is approximately 1000 times lower than that of the PNM, as shown

in Figure 2G. Besides, Figure 2H indicates the ECM has the same

efficiency for solving τϕ and τc. To find the key parameters for δ, we

studied the influences of various parameters of the PNM on δ. In

Figure S9, we found that δ τϕ
� ��Z�3:6

sq and δ τcð Þ�Z�0:2
sq and that other

parameters have a weak influence on both δ τϕ
� �

and δ τcð Þ, where

Zsq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZcathodeZanode

p
. Thus, we can conclude that increases in Zsq

improve the accuracy of the analytical solution. Because a higher Zsq

allows for the easier transport of ions through each pore, resulting in

a more uniform concentration distribution, the assumptions used to

derive τϕ and τc (i.e., C and R are constant) are reasonable.

F IGURE 3 Relaxation time in a real porous electrode. (A) Scanning electron microscopic image of active carbon obtained from a previous
experiment and the corresponding binary segmentation results. The white region refers to the pore phase, and the black region refers to the solid
phase. (B) Reconstructed electrode obtained using the simulated annealing algorithm. (C) Pore network of the pore phase extracted from (B).
(D) pore network modelPNM of a supercapacitor composed of an active carbon electrode and glass microfiber (MFV5) separator. (E) Distribution

of the connectivity of (C). (F) Comparison between the experimental and analytical τϕ.
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2.3 | Validation of the PNM results using
experimental evaluation

To further validate the accuracy of Equation (1), we compared the

analytical solution of τϕ with its experimental solution. Because

the topological structure of practical carbon-based electrodes is disor-

dered and the average properties (such as the pore size distribution)

cannot elucidate the significance of heterogeneous structural parame-

ters, setting the geometric parameters either randomly or according

to a normal distribution is not reasonable. Therefore, we constructed

a disordered pore network from a real carbon-based electrode, as

shown in Figure 3, to bridge the PNM with the real structure.

At present, the structure of porous media can be obtained nonde-

structively using computed tomography (CT)42 and SEM.43 However, CT

cannot easily resolve structures less than half a micron in size, and SEM

has the disadvantage of providing only two-dimensional (2D) information.

An effective method for obtaining the 3D structure of porous electrodes

based on SEM images is random reconstruction, such as the simulated

annealing (SA) algorithm44 or machine learning.45 The SA algorithm can

reconstruct a porous electrode from the SEM image segmentation results

(Section 4.2). Figure 3A,B show SEM images of active carbon obtained

from an experiment46 and the reconstructed active carbon electrode,

respectively. The reconstructed electrode preserves the details of the

active carbon to the greatest extent possible. The maximal ball algorithm

(Section 4.3) was then adopted to convert the reconstructed electrode

into a disordered pore network, as shown in Figure 3C. The PNM of the

supercapacitor46 was constructed based on the extracted pore network,

as shown in Figure 3D. The thicknesses of the electrode and separator

are 0.38 and 0.42 mm, respectively. The cathode and anode comprise

20 extracted pore networks, thereby satisfying the actual thickness of

the electrodes. In addition, periodic boundary conditions were imposed

along the yz direction to reflect actual conditions. Detailed parameters

are listed in Table S5.

Figure 3E shows that the Z of the reconstructed electrode is 6.4;

thus, Equation (1a) is sufficiently accurate to calculate τϕ because

δ τϕ
� ��Z�3:6

sq . Using Equation (1a), we found that τϕ ¼16:4 s, which is

roughly within one order of magnitude relative to the relaxation time

(12.5 s) observed in the experimental data,46 as shown in Figure 3F.

Given the simplicity of the governing equations, the remaining dis-

crepancies are not surprising. Therefore, the influence of the pore

structure of porous carbon-based electrodes on the charging dynam-

ics can be well described by the PNM.

2.4 | Accelerating charging dynamics using the
self-driven optimization framework

The structure of porous electrodes determines the charging time scale

of supercapacitors, as shown in Figures S7 and S8. However, the

empirical design of electrodes is expensive, time- and labor-intensive,

and limited to a narrow design space determined by the existing

manufacturing routes. To guide the experimental design of electrodes

and accelerate material discovery, we used the self-driven optimization

framework to explore the optimal structure of the PNM. Compared

with the traditional gradient descent method, the genetic algorithm

(Section 4.4) does not need to consider whether the objective function

is differentiable and can be directly computed iteratively.47

Figure 4 exhibits a simple example of our proposed framework, which

aims to accelerate the charging dynamics (i.e., minimize τϕ) by optimizing

the pore size distribution of the electrodes in Figure 3C. The initial

and optimized structures are shown in Figure 4A,B, respectively.

Notably, the porosity of the electrode did not change after optimiza-

tion. The pore size distribution is controlled by changing the size of

each pore in the electrodes rather than the form of the distribution

function. Figure 4C presents the optimization procedure of τϕ. As the

number of iterations increases, τϕ decreases from an initial value of

5.37�10�2 s to the optimal value of 5.04�10�2 s. Therefore, when the

pore size distribution of the electrodes is optimized, τϕ drops to 94% of its

initial value. Finally, we compared the pore size distributions before and

after optimization, as shown in Figure 4D. The results show that an appro-

priate reduction in pore size can accelerate the charging dynamics of the

electrode. In addition, adjusting the form of the pore size distribution is an

effective means to decrease τϕ, as shown in Figure S11. The results

indicate that the pore size distribution evolves from an initial normal

distribution to a bimodal one and that τϕ drops to 41% of its initial

value. Numerous experiments have demonstrated that porous electrodes

with bimodal distributions can accelerate the charging dynamics of

supercapacitors.48–50 However, determining the optimal form of a bimodal

distribution using only a few sets of experiments is difficult. Fortunately,

the optimization framework proposed in this work can quickly determine

optimal structural parameters, such as the pore size distribution, connec-

tivity distribution, and porosity, as well as electrolyte properties.

3 | DISCUSSION

In this work, we introduced a PNM to study and accelerate the charging

dynamics in porous carbon-based electrodes via self-driven optimization.

An ECM of the PNM was constructed to quantitatively describe the

influence of the disordered structure of the PNM on the charging pro-

cess, which was then compared with the results of numerical calculations

using simplified PNP equations. Using the ECM, we proposed a simple

mathematical expression that considers the effects of electrolyte proper-

ties and disordered electrode structures to quantify τϕ and τc. We found

that this expression can be simplified into expressions derived from

other widely used models, such as the TL and SE models. This expres-

sion was verified using numerical solutions and experimental data,

with relative errors of less than 100% and 30%, respectively. Accord-

ing to the numerical solutions, increasing σ results in slow charging

dynamics owing to the disordered pore size distribution. In addition,

increasing Zcathode and Zanode can reduce τϕ and τc to accelerate the

charging dynamics. More interestingly, even when σ and Z are kept

constant, the pore arrangement (i.e., microscopic surface topography)

exerts significant influences on the ranges of τϕ and τc; these influ-

ences cannot easily be described using traditional models. Finally, we

proposed a self-driven optimization framework by coupling our
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derived expression with a genetic algorithm to accelerate the charging

dynamics in porous carbon-based electrodes by optimizing their struc-

tural parameters. For example, τϕ can decrease to 96% of its initial

value by searching for the optimal pore size distribution. Moreover, to

decrease τϕ and τc, we could (1) increase Z and the A of electrode by

calendaring the electrode, (2) reduce σ by changing the synthesis pro-

cess, or (3) change the microscopic surface topography. Therefore,

our study provides a general platform for understanding and optimiz-

ing the charging dynamics of porous carbon-based electrodes.

In the future, more accurate governing equations, such as the

modified PNP equations that consider the size of ions, could be used

in the PNM to achieve more realistic simulations in systems with smal-

ler pore sizes.51,52 Furthermore the process of electrode fabrication

and process simulation methods, such as the discrete element

method,53 could be incorporated into the existing framework to

achieve optimized porous structures.

4 | METHODS

4.1 | Pore network model

4.1.1 | Pore networks of the electrode and
bulk phase

The fundamental tenet of PNM is that the pore phase of the porous

electrode and the bulk phase are regarded as a pore network consist-

ing of many pores and throats.41 The PNM can be transformed into

F IGURE 4 Optimization of the pore network model structure using the self-driven optimization framework to minimize τϕ. (A) Initial
structure. (B) Optimized structure with the same porosity as in (A). (C) Minimum τϕ for each iteration. (D) Pore size distributions before and after
optimization.
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the random resistor networks54 and percolation models55 by removing

the pores. The total volume of all pores in the pore phase determines the

porosity of porous electrodes. Throats are both relatively long, narrow

channels connecting pores in the electrode and concise channels in the

bulk phase, which can be regarded as capillary tubes for ion transport.

Connectivity is defined as the number of throats connected to the pores.

In this work, ball-and-stick and cube-and-cuboid models were used to

characterize the pore networks of the porous electrodes and bulk phase,

respectively, as shown in Figure S1a.

The default structural parameters of the pore networks are set as

follows. The topological structure is a cubic isometric network,

as shown in the red portion of the PNM in Figure 1. The spaces

between the nodes in the electrode and bulk phases are 100 and

50 nm, respectively. The dimensions of both the cathode and anode

are 5 � 5 � 5. The size of the bulk phase is 10 � 10 � 10. The pore

sizes satisfy a normal distribution (the average pore size is 50 nm, and

σ is 10 nm). Zcathode and Zanode are both 2.5. ω Controls the pore

arrangement, and the default value is zero. All PNMs were generated

using the Python package OpenPNM.

4.1.2 | Governing equations and initial conditions

The local electrostatic potential ϕ x,tð Þ and local ionic concentration

c x,tð Þ are modeled using the simplified PNP equations,40 which are

appropriate for obtaining the linear response of supercapacitors with

small salt concentration gradients. The simplified equations assume

electroneutrality in the pores, a monovalent salt solution, and identical

diffusion coefficients for both anions and cations. The corresponding

electrostatic potential ϕi tð Þ and ionic concentration ci tð Þ in pore i are

described by the PNM as follows:

Porous electrode

Ci
∂ϕi

∂t
¼�

XZi

j¼1

GΩ
ij ϕi�ϕj

� �
, ð2aÞ

Vi
∂ci
∂t

¼�
XZi

j¼1

Gd
ij ci�cj
� �� Ci

2zcountF
∂ϕi

∂t
: ð2bÞ

Bulk phase

0¼�
XZi

j¼1

GΩ
ij ϕi�ϕj

� �
, ð2cÞ

Vi
∂ci
∂t

¼�
XZi

j¼1

Gd
ij ci�cj
� �

, ð2dÞ

where Ci is the capacitance of pore i, Vi is the volume of pore i, Zi

is the connectivity of pore i, zcount is the counterion valence, F is

the Faraday constant, Gd
ij is the diffusive conductance between

pores i and j, and GΩ
ij is the ionic conductance between pores i and j,

respectively. Notably, zcount is +1 in the cathode and �1 in the anode

for a monovalent salt solution. Ci and Gtr
ij (where tr is d or Ω) are

defined as:

Ci ¼ Siε0εrλ
�1
D,i , ð3aÞ

Gtr
ij ¼

1
gtri

þ 1
gtrij

þ 1
gtrj

 !�1

, ð3bÞ

gdi ¼
DAi

li
, ð3cÞ

gΩi ¼2F2ci
RT

gdi ¼
2F2DAici

RTli
, ð3dÞ

where Si is the surface area of pore i minus the cross-sectional

area of throat ij, ε0 is the permittivity of a vacuum, εr is the relative

permittivity of the solution, λD,i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrRTð Þ= 2F2ci

	 
r
is the Debye

length of pore i, D is the diffusion coefficient of the ions, Ai is

the cross-sectional area of pore i or throat ij, li is the length of pore i

or throat ij, R is the ideal gas constant, and T is the temperature.

Equation (3b) shows that the conductance of each pore–throat–pore

conduit consists of three parts. The structural parameters of each part

of the conduit, such as Ai and li , are explained in detail in Figure S3.

Initially, the ionic concentration is homogeneous, and the elec-

tric potentials þΨ and �Ψ are applied to the cathode and anode,

respectively:

I.C.

ci t¼0ð Þ¼ c0, ð4aÞ

ϕcathode t¼0ð Þ¼þΨ¼ vVm, ð4bÞ

ϕanode t¼0ð Þ¼�Ψ¼�vVm, ð4cÞ

where c0 is the initial ionic concentration, v is the scale factor of

the thermal voltage, Vm ¼ kBTð Þ=e is the thermal voltage, kB is the

Boltzmann constant, and e is the elementary charge.

We use the following default parameter set: z+ = �z� = 1,

T = 298.15 K, D = 2 � 10�9 m2/s, εr ¼71, and c0=100mol/m3.

Therefore, the initial λD and Vm are equal to 9.15�10�10m and

0.02526V, respectively. The above governing equations were solved

for specific initial conditions over 10�5τϕ –10
2τc using the COMSOL

Multiphysics finite element-based solver.

4.1.3 | Numerical calculation for the relaxation time
scales in the PNM

To characterize the different time responses observed during the

potential–concentration coupled charging dynamics, we adopt τ to

describe the point at which the potential and concentration reach

HUANG ET AL. 8 of 11
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equilibrium. According to a purely exponential charge buildup,5,30 the

time-dependent functions τϕ,i tð Þ and τc,i tð Þ in pore i are defined as:

τϕ,i tð Þ¼� d ln 1� ϕ�ϕeq

� �
= ϕ0�ϕeq

� �� �
dt

� ��1

, ð5aÞ

τc,i tð Þ¼� d ln 1� c�ceqð Þ= c0�ceqð Þ½ �
dt

� ��1

, ð5bÞ

τϕ,sPNP ¼ max τϕ,ijτϕ,i tð Þ¼ t
� �

, ð5cÞ

τc,sPNP ¼ max τc,ijτc,i tð Þ¼ tð Þ, ð5dÞ

where subscripts eq and 0 represent the equilibrium and initial states,

respectively.30 Figure S2c,d shows the τϕ,i tð Þ and τc,i tð Þ in the porous

electrode and bulk phase, respectively. τi is equal to the values corre-

sponding to the intersection of τi tð Þ and y¼ x. The relaxation times of the

system (i.e., τϕ and τc) are defined as themaximum τϕ,i and τc,i in all pores.

4.1.4 | Analytical solution of the ECM of the PNM

To provide an accurate description of the influence of the PNM parame-

ters, especially τ, on the charging dynamics, we introduce an ECM of the

PNM, as shown in Figures S1b and S4. Notably, in this study, the capaci-

tance of the bulk phase is zero because the bulk phase cannot absorb

ions. In addition, C and G are hypothetically independent of time.

However, only τϕ can be obtained by classical ECM,5,24 as shown in

Figure S4a. To calculate τc, we extend the ECMby changing the physical

meaning of capacitors and resistors. Specifically, in the case of concentra-

tion, the capacitance is equal to the pore volume and the resistance is the

reciprocal of the diffusive conductance of the conduit, as shown in

Figure S4b. Section S1 details the derivation of Equation (1), which mainly

focuses on the potential, and the concentration is obtained simply by

substituting the corresponding place. Currently, the algebraic form of

Equation (1) cannot be obtained. Therefore, the second-smallest eigen-

value of thematrixwas solved using the Python package SciPy.

4.2 | SA algorithm: Reconstruction of real porous
electrodes

A nested multiresolution hierarchical SA algorithm44 was used to

reconstruct the porous electrode from SEM images. This algorithm

can capture the features of the long-range connectivity of samples

with a low computational burden. The reconstruction process is as fol-

lows: (1) scan the porous electrode using SEM to obtain the reference

image; (2) identify the solid and pore phases of the reference image

using image segmentation; (3) generate a random initial 3D voxel

point cloud with the same porosity as the reference image; (4) use the

SA algorithm to reconstruct the point cloud randomly by changing

the phase of a voxel (solid or pore) so that its features gradually

resemble the reference image; and (5) transform the voxel point cloud

into volumetric data from the pore and solid phases. The parameter

setup of the algorithm is presented in Table S3. The code for the algo-

rithm is obtained from the literature.44

4.3 | Maximal ball algorithm: Extraction of pore
networks from real porous electrodes

The maximal ball algorithm is a morphological analysis method used to

extract a network of pores and throats from volumetric data.56 The

extraction process is as follows: (1) extract the representative elemen-

tary volume (REV) of the pore phase; (2) select any voxel point in the

REV and search for the adjacent voxel points in specific directions

around it; (3) use the shrinkage algorithm to find the maximum ball as

well as the upper and lower limits of its radius according to the forma-

tion range of the voxels to determine the size and position of the

maximum ball; (4) continue to find the next maximum ball according

to the above method; and (5) classify all maximum balls into pores or

throats. The parameter setup of the algorithm, which was implemen-

ted using the software Avizo, is shown in Table S4.

4.4 | Genetic algorithm: Optimization of the PNM
structure

The self-driven optimization framework coupling Equation (1) and the

genetic algorithm are shown in Figure S10. The concept of a genetic

algorithm is based on the evolution of a population of candidate solu-

tions to a given design case using operators based on natural diversity

and selection.47 The process of optimization is as follows: (1) initialize

individuals (i.e., a certain type of pore arrangement) and populations

(i.e., many types of pore arrangements) and encode them; (2) before

the termination conditions satisfied, calculate the fitness of the

decoded individual, parent selection, crossover, and mutation; and

(3) after termination, select the individual with the best fitness

(i.e., the optimal pores arrangements) as the optimal solution. The

parameter setup for the algorithm is listed in Table S6. The genetic

algorithm was implemented using the Python package Geatpy.
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