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A B S T R A C T   

Dense gas–solid reacting flow widely exists in kinds of engineering fields, such as blast furnace ironmaking, 
pharmaceutical manufacturing, energy conversion, and chemical engineering. These processes containing both 
physical and chemical changes are extremely complex. Revealing the basic principles of the gas–solid flow 
government and thermochemical behavior is critical to the optimization, design, and control of kinds of dense 
gas–solid reacting systems. Computational fluid dynamics – discrete element method (CFD-DEM) is considered a 
potential tool to achieve this goal, which suffers from expensive computational resources. Accordingly, this work 
develops a graphics processing unit (GPU)-accelerated CFD-DEM reactive model, integrating with heat transfer, 
heterogeneous reactions, and homogenous reactions. The accuracy of the GPU-accelerated heat and mass transfer 
sub-models are detailly verified and the simulation results agree well with analytic solutions. Additionally, the 
current model can successfully simulate the thermochemical behavior of the particle cooling process and the 
coal-fueled chemical looping gasification process, confirming its reliability in numerically studying dense 
gas–solid reacting flow. Furthermore, the GPU-accelerated strategy is demonstrated to perform great speed-up 
performance and stability. This work provides a reliable and high-performance parallel calculation method for 
numerically studying dense gas–solid reacting flow.   

1. Introduction 

Dense gas–solid reacting flow exists in various engineering fields, 
such as blast furnace ironmaking, biomass gasification, coal combustion, 
and chemical looping combustion [1–5]. It commonly occurs in kinds of 
fluidized equipment, such as bubbling fluidized bed (BFB), dual circu
lating fluidized bed (DCFB), and fixed bed. The thermochemical con
version process of solid fuels involves complicated multi-physics 
processes such as hydrodynamics, heat transfer, homogenous reactions, 
and heterogeneous reactions [6–8]. Taking the biomass gasification 
process in a BFB for example, a series of hydrodynamics and thermo
chemical behavior take place simultaneously at different spatial scales 
[9], as shown in Fig. 1. Specifically, two types of bed materials are 
fluidized and undergo solid mixing and segregation. The dilute phase 
appears in the upper part and the dense emulsion phase can be observed 
in the lower part which is dominated by bubble evolution. The bed 
materials undergo intensive heat transfer because of the large heat ca
pacity and the biomass particles experience drying, pyrolysis, and 
gasification processes with the increase in temperature. These complex 

processes bring a huge difficulty to an in-depth understanding of such 
complex systems. Therefore, it is of great importance to deepen the 
comprehensive understanding of the thermochemical and physical 
characteristics of dense gas–solid reacting systems. 

Up to now, lots of experimental studies have been accomplished to 
preliminarily understand some basic principles of dense gas–solid 
reacting flow, such as pressure drop, temperature distribution, and 
gaseous product distribution [10–13]. Because of the limitation of the 
non-intrusive nature of measure devices and severe operating condi
tions, only a few macroscopic variables can be obtained by experimental 
measurements. Meanwhile, it is unable to obtain detailed gas–solid 
microscopic behavior, heat and mass transfer contribution, and associ
ated reactions by experiment, which are essential for optimizing dense 
gas–solid reacting systems. 

Due to the development of numerical computation and computer, 
computational fluid dynamics (CFD) has been considered as a cost- 
effective, repeatable, and powerful alternative tool to in-depth study 
dense gas–solid reacting systems. Based on a comprehensive review 
[14], the CFD methods are classified as the Eulerian-Eulerian (E-E) 
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framework and the Eulerian-Lagrangian (E-L) framework because of 
different treatments of the solid phase. The former considers the solid 
phase as the continuum and the kinetic theory of granular flows (KTGF) 
is adopted to solve the particle–particle collisions under the Eulerian 
framework. Due to the simplification of the particle phase, the E-E 
framework has been widely adopted for numerically studying various 
dense gas–solid reacting systems because of its strength of computa
tional convenience [15,16]. However, it has the intrinsic limitation of 
failing to obtain detailed particle information. Comparably, the E-L 
framework can accurately describe the particle phase. As a representa
tion, the computational fluid dynamics – discrete element method (CFD- 
DEM) can track each particle’s movement and accurately solve the inter- 
particle collision, which can obtain abundant particle-scale information. 
Thus, the CFD-DEM method has been widely adopted to numerically 
study the multiphase flow and thermochemical behavior in fluidizing 
facilities due to the ability to be coupled with heat transfer sub-models, 
heterogeneous reactions, and homogenous reactions. Recently, Wang 
et al. [17] developed the CFD-DEM model coupled with thermochemical 
sub-models and particle-size polydispersity which showed great accu
racy by validating the particle diameter, mixing index, and particle 
temperature. The thermochemical behavior of char combustion was 
numerically studied. Kong et al. [18] numerically studied the biomass 
gasification process using the CFD-DEM method considering thermo
chemical and polydispersity effects. The particle scale information was 
thoroughly discussed with the investigation of some key operating pa
rameters on particle behavior. In addition, the CFD-DEM method also 
has extensive applications such as blast furnace ironmaking, chemical 
looping combustion, additive manufacturing, and fluid catalytic 
cracking, underpinning reactor design and process optimization 
[19,20]. Unfortunately, the calculation of particle–particle collision 
needs huge computational resources, thus, the CFD-DEM method is 

limited to studying small-scale reactors. 
In recent years, various speed-up strategies for the CFD-DEM method 

have been proposed with the development of numerical algorithms and 
computer hardware. Due to its highly parallel structure and large data 
throughput, the graphics processing unit (GPU) has been considered a 
promising tool among all speed-up strategies. Especially, great speed-up 
performance has been proven in the simulation of granular flow, in 
which the GPU has been utilized for parallel simulations with a huge 
number of particles. Recently, several researchers have attempted to 
develop the GPU-accelerated CFD-DEM method in multiphase flow. Lu 
et al. [21] developed a GPU-accelerated DEM code coupled with the CFD 
model to numerically study granular and gas–solid two-phase flow. The 
Fortran based CFD solver was coupled with the CUDA/C++ based DEM 
solver. Norouzi et al. [22] developed a new GPU-accelerated CFD-DEM 
method in which the CFD solver is based on the open-source CFD code 
and the DEM solver is based on their in-house DEM code. The new model 
was evaluated in three different cases of gas–solid two-phase flow and 
great acceleration performance can be obtained. However, the current 
studies only focus on the hydrodynamics without considering the ther
mochemical behavior, which limits its application in numerically 
studying gas–solid reacting flow systems. More attention should be paid 
to extending the existing solver to integrate with mass, momentum, 
energy, and species changes. Furthermore, the communication overhead 
between CPU and GPU is time-consuming and needs to be optimized. 

To bridge this research gap, the current work develops a GPU- 
accelerated CFD-DEM reactive model, integrating with heat transfer, 
heterogeneous reactions, and homogenous reactions, which can accu
rately and efficiently simulate the hydrodynamics and thermochemical 
behavior in fluidizing facilities. To minimize the communication over
head between CPU and GPU, the pinned memory is adopted which can 
significantly reduce the time consumption of data transfer between CPU 

Fig. 1. Diagrammatical of multi-physics processes: biomass gasification process in a BFB gasifier.  
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and GPU. The structure of this work is: Section 2 gives the governing 
equations of gas and solid phase, heat transfer sub-models, and chemical 
reaction kinetics. Section 3 verifies the accuracy of the heat and mass 
transfer sub-models. Then the model is used to numerically study the 
particle cooling process and the coal-fueled chemical looping gasifica
tion process in Section 4. The speed-up performance of the GPU- 
accelerated CFD-DEM reactive model is illustrated in Section 5. Con
clusions are summarized in Section 6. 

2. Mathematical model 

A GPU-accelerated CFD-DEM reactive model is developed for simu
lating dense gas–solid reacting flow. The gas phase is considered as the 
continuum, and the solid phase is considered as the dispersed phase. The 
governing equations of gas and solid phase, heat transfer sub-models, 
and chemical reactions are detailed. 

2.1. Governing equations for gas phase 

The gas phase is solved through the volume-averaged governing 
equations. The mass, momentum, energy, and species conversation 
equations are calculated by [23]: 

∂
(
εgρg

)

∂t
+∇⋅

(
εgρgug

)
=
∑Ng

n=1
Rgn (1)  

∂
(
εgρgug

)

∂t
+∇⋅

(
εgρgugug

)
= ∇⋅Sg + ρgεgg −

∑M

m=1
Igm (2)  

∂
(
εgρgCp,gTg

)

∂t
+∇⋅

(
εgρgugCp,gTg

)
= ∇⋅

(
εgκg∇Tg

)
− Qgp − ΔHrg (3)  

∂
(
εgρgXn

)

∂t
+∇⋅

(
εgρgugXn

)
= ∇⋅

(
εgρgDn∇Xn

)
+Rgn (4)  

where Ng is the total number of gas species. ug, ρg, and εg are the velocity, 
density, and volume fraction of the gas phase. Rgn and = Sg are the 
volumetric generation rate of the nth gas species and the gas stress tensor, 
respectively. Igm is the interphase momentum exchange term between 
the mth solid phase and the gas phase. Tg is the gas temperature. κg is the 
thermal conduction and Cp,g is the specific heat of the gas phase. Dn and 
Xn are the diffusivity coefficient and mass fraction of the nth gas species, 
respectively. ΔHrg is the chemical reaction heat source and Qgp is the 
convection heat transfer rate between gas and solid phases. Through the 
above quantities, the gas phase can be coupled with the solid phase, 
which are written as: 

εg = 1 −
1
Vc

∑Np

i=1
Vp,i, Igm =

1
Vc

∑Np

i=1
fd,i,

Qgp =
1
Vc

∑Np

i=1
Qgp,i, Rgn =

1
Vc

∑Np

i=1
Rgn,i

(5)  

where Vc and Vp,i are the volume of the current computational cell and 
the ith particle, respectively. Rgn,i is the mass consumption or generation 
rate of the ith particle. Qgp,i is the convection heat transfer rate between 
the ith particle and the gas phase. 

2.2. Governing equations for solid phase 

In the DEM method, particles can be tracked individually and their 
dynamics can be calculated using Newton’s law of motion. The motion 
of ith particle is calculated as [24]: 

mi
dvi

dt
= mig + f∇p + fd,i + fc,i (6)  

Ii
dωi

dt
=
∑k

j=1,j∕=i

(
Ln × fct,ij

)
(7)  

where ωi and vi are the rotational and translational velocities, respec
tively. f∇p is the pressure gradient force which relates to the fluid 
pressure gradient. L is the distance between the contact point and the 
particle center. fc,i is the contact force acting on the ith particle, which 
includes a normal component fn,ij and a tangential component ft,ij [25]: 

fc,i =
∑N

j=1,j∕=i

(
fn,ij + ft,ij

)
(8)  
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⃒

(10)  

where η, μ, and k are the damping coefficient, friction coefficient, and 
spring stiffness, respectively. The Linear spring-dashpot (LSD) model is 
chosen which has been proven to have higher efficiency compared with 
the non-linear Hertzian model [26]. The normal damping coefficient ηn,ij 
can be calculated as [24]: 

en,ij = exp

(

−
ηn,ijtcol

n,ij

2meff

)

(11)  
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(
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ηn,ij =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2kn,ijmeff

√
⃒
⃒lnen,ij

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

π2 + ln2en,ij

√ (13)  

where tcol
n,ij is the collision time. meff (=mimj/(mi + mj)) is the effective 

mass of ith particle and jth particle. en,ij is the normal restitution coeffi
cient. Similarly, the tangential damping coefficient (ηt,ij) can be calcu
lated. fd,i is drag force acting on ith particle. In this work, the drag force is 
calculated based on the Gidaspow correlation, in which the fluid volume 
fraction is divided into two ranges [27]: 
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where CD is the drag force coefficient related to the particle Reynolds 
number (Rep). β is the momentum exchange coefficient. 

2.3. Heat transfer sub-models 

The heat transfer sub-models are coupled with the CFD-DEM 
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framework. The particle is assumed to be isothermal without consid
ering the temperature gradient inside the particle. The heat transfer of a 
particle can be classified into four modes: conduction, convection, ra
diation, and reaction. The energy conservation equation of particle is 
given as: 

miCp,i
dTp,i

dt
= Qpp,i +Qpgp,i +Qgp,i +Qrad,i +ΔHrs (18)  

where ΔHrs is the heat transfer rate caused by chemical reactions. Q 
represents the source term caused by different modes. The convective 
heat transfer rate Qgp,i is formulated as: 

Qgp,i = hpg,iAp,i
(
Tg − Tp,i

)
(19)  

hpg,i =
Nup,iκg

dp,i
(20)  

Nup,i =

⎧
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⎪⎪⎪⎪⎪⎪⎪⎩

2 + 0.6ε3.5
g Re1/2

p,i Pr1/3
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g Re0.8

p,i Pr1/3

2 + 0.000045ε3.5
g Re1.8

p,i

Rep,i < 200

200 < Rep,i < 1500

Rep,i > 1500

(21)  

where Ap,i stands for particle surface area. hpg,i is the convection heat 
transfer coefficient. Particle Nusselt number (Nup,i) is related to Prandtl 
number Pr (=μgCp,g/κg) and Rep,i [28]. 

As shown in Fig. 2, the conductive heat transfer can be classified as 
two paths, i.e., particle–particle conduction (Qpp,i) and particle–fluid- 
particle conduction (Qpfp,i). As a direct heat transfer path, the former one 
occurs when two particles collide and is formulated as [29]: 

Qpp,ij = 4
κp,iκp,j

κp,i + κp,j
Rc,ij
(
Tp,j − Tp,i

)
(22)  

Rc,ij =
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√
√
√
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where Rc,ij is the radius of the particle contact surface. κp,i and κp,j denote 
the thermal conductivity for the ith particle and jth particle, respectively. 

Similarly, if two particles are very close, Qpfp,i are considered to 
transfer through a gas layer wrapping the particle, as shown in Fig. 2(b). 
The thickness of the gas layer is assumed to be 0.2 Rp,i, and Qpfp,i can be 
calculated as [30]: 

Qpgp,ij = κg
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)
∫ Rout
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√
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)2
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ij
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)2
√
√
√
√ (26)  

where Rin and Rout are the integral bounds of the contact region, 
respectively. 

If the reacting system operates under high temperature (>600 ℃), 
the radiation heat transfer should be considered which occurs between 
particle and surrounding particles in a sub-domain. Thus, the environ
mental temperature (Tenv) can be obtained based on gas temperature and 
mean particle temperature in the sub-domain [31]. Qrad,i is calculated 
related to Tenv and given as: 

Qrad,i = ep,iAp,iσ
(

T4
env − T4

p,i

)
(27)  

Tenv = εgTg,Ω +
(
1 − εg

) 1
Np,Ω

∑Np,Ω

j=1,j∕=i

Tj (28)  

where ep,i is effective emissivity. Np,Ω and Tg,Ω are the number of parti
cles and the gas temperature in the sub-domain, respectively. σ is the 
Stefan-Boltzmann constant. 

As for the heat transfer caused by chemical reactions, the heat is 
composed of that related to the solid phase (ΔHrs) and the gas phase 
(ΔHrg). For both ΔHrg and ΔHrs, the heat is obtained because of the 
difference in enthalpies of the gaseous or solid reactants and products. 
They are generally formulated as: 

ΔHr =
∑

Hn,products −
∑

Hn,reactants (29)  

Furthermore, the enthalpy change of nth species at temperature T can be 
obtained by: 

Hn(T) = Ho
n

(
Tref
)
+

∫ T

Tref

CpndT (30)  

where Cpn is the specific heat capacity. Ho
n
(
Tref
)

is the enthalpy for nth 

species at reference temperature Tref. 

2.4. Chemical reactions 

Based on the state of reactants and products, the chemical reactions 
that take place in fluidized beds can be classified as heterogeneous re
actions and homogenous reactions. The former is calculated at the 

Fig. 2. Schematic diagram of particle–particle conduction (a) and particle–fluid-particle conduction.  
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particle scale and the latter is solved at the grid scale. The particle mass 
conservation equation can be evaluated as: 

dmi

dt
=
∑Np

n=1
Rsn (31)  

where Np is the total number of solid species in the ith particle. Rsn is the 
production or consumption rate of species n in the ith particle. The 
progressive conversion model and shrinking core model are two repre
sentations of particle conversion models [7]. The former is suitable for 
highly porous particles due to the assumption that the gas phase re
actants diffuse evenly into the particle before reacting with the pore 
surface. Thus, the solid phase reactant reduces evenly as the reaction 
proceeds. Comparable, in the latter, the density of the particle is 
considered as a fixed value and the particle diameter decreases because 
of the solid products “flaking-off” from the surface of the particle. Thus, 
the shrinking core model is adopted to calculate the diameter of the 
particle, which has been widely used in simulating chemical reaction 
processes in fluidized beds [32–35]. The particle diameter during the 
chemical reactions can be given as: 

dp =

(
6mi

πρp

)1/3

(32) 

When the particle centroid method (PCM) is used in the CFD-DEM 
method, the grid size (Δx) should be 3 ~ 5 times the particle diameter 
(dp) to avoid inaccuracy at cell boundaries with fine grids [36,37]. Thus, 
when the grid size remains unchanged, CFD-DEM can also maintain the 

Table 1 
Chemical reactions and reaction rates [39–42].  

Gasification 
reaction 

Reaction rates 

R1 Char + CO2 

→ 2CO +
0.0365H2 +

0⋅.026H2O 

rCO2 =

kCO2 KCO2 PCO2

1 + KCO2 PCO2 + KCOPCO 

ṁChar =

ρpεp
Ap

1 − ε0
rn
(
1 − Xp

)2/3 

R2 Char + H2O 
→ 1.073H2 +

CO +
0⋅.026H2O 

rH2O =

kH2OKH2OPH2O

1 + KH2OPH2O + KH2 PH2 

Water-gas-shift 
reaction  

R3 CO + H2O → 
H2 + CO2 

rWGS =

− k0

(
e− E/RTC0.5

H2
CCO2 −

1
exp( − 4.33 + 4577.8/T)

e− E/RTCH2 OCCO

)

Metal oxide 
reduction 
reaction  

R4 3Fe2O3 +

CO → 2Fe3O4 

+ CO2 

ṁCO =
kCOR0

2MO2

ρpεp

(

XFe2O3 + XFe3O4 ×
3MFe2 O3

2MFe3 O4

)

(1 − ξ)2/3MCO 

R5 3Fe2O3 + H2 

→ 2Fe3O4 +

H2O 

ṁH2 =
kH2 R0

2MO2

ρpεp

(

XFe2O3 + XFe3O4 ×
3MFe2 O3

2MFe3 O4

)

(1 − ξ)2/3MH2   

Fig. 3. Schematic diagram of the typical call structure of the GPU-accelerated CFD-DEM reactive model (a) and the representation of thread ID (b).  
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same accuracy even with smaller particle diameters. To avoid the huge 
amounts of computational time on particle collision detection for large 
particles when the particle’s diameter becomes too small, the particle is 
removed from the calculation when its diameter decreases to a threshold 
value of its original diameter. Therefore, the grid size and particle 
diameter are always within reasonable ranges. 

Taking coal-fueled chemical-looping gasification (CLG) for example, 
the solid fuel is coal char and oxygen carriers are composed of Fe2O3 and 
Al2O3. The reactions considered include the char gasification reactions 
(R1, R2), the water–gas-shift reaction (R3), and the metal oxide reduc
tion reactions (R4, R5). The chemical reactions and reaction rates are 
detailed in Table 1. More detailed kinetic parameters can be found in our 
previous work [38]. 

2.5. GPU implementation 

Although the CFD-DEM method has been paralleled on Central 
Processing Unit (CPU) multi-cores, it still has limitations in simulating 
large-scale chemical reaction systems due to the high-frequency particle 
collision and complex thermochemical behavior. Compared to CPU, 
GPU can provide much higher instruction throughout and memory 
bandwidth [43]. Furthermore, GPU is designed with plenty of stream 
multiprocessor (SM) composed of GPU cores for highly parallel com
putations. The introduction of CUDA makes it possible to solve complex 
computing problems in a more efficient way than the CPU. To achieve 
better performance, the CPU and GPU can be coupled to complete the 
complex calculation, which is called heterogeneous computing. Algo
rithm 1 presents the sample code of the GPU-accelerated particle–fluid 
convection heat transfer method. The code consists of the host code on 
the CPU and the device code on the GPU. The latter is defined as a kernel 
through the attributes(global) declaration specifier. Each thread is given 
a unique thread ID based on the execution configuration and used to 

calculate a particle in the system. The number of GPU threads used in the 
calculation should be the same as the number of particles in the system 
(N) and is specified using a <<<gridsize, blocksize>>> execution 
configuration syntax. Fig. 3(a) presents the typical call structure of the 
GPU-accelerated CFD-DEM method. One kernel can correspond to only 
one grid while one grid can be constructed by many blocks and one 
block can be constructed by many threads. As a three-dimensional (3D) 
vector, threadIdx can be identified using a one/two/three-dimensional 
thread index and forming a one/two/three-dimensional thread block 
based on the computational need. Referring to Fig. 3(b), the thread ID 
for a one-dimensional (1D) block and thread can be calculated based on 
the length of a block (blockDim%x), the index of thread in the block 
(threadIdx%x), and the index of the block (blockIdx%x).  

Algorithm 1. Sample code of GPU-accelerated particle–fluid convection heat transfer 
method. 

N: The number of particles. 
// Kernel definition 
module heat-transfer 
contains 

attributes(global) subroutine convection(N) 
implicit none 
integer:: Ii 
integer:: N 
Ii = threadIdx%x + (blockIdx%x-1) * blockDim%x 
if (Ii ≤ N) then 

Qgp,i = hpg,iAp,i
(
Tg − Tp,i

)

endif 
end subroutine convection 

end module heat-transfer 
program main 

use heat-transfer 
use cudafor 
implicit none 
type(dim3):: gridsize, blocksize 
gridsize = dim3(N/x + 1,1,1) 

(continued on next page) 

Fig. 4. Schematic diagram of the coupling procedure of the GPU-accelerated CFD-DEM reactive model.  
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(continued ) 

blocksize = dim3(x,y,z) 
// Kernel invocation 
call convection<<<gridsize, blocksize>>>(N) 

end program main  

2.6. Numerical scheme 

Fig. 4 presents the coupling procedure of the GPU-accelerated CFD- 
DEM reactive model. The fluid phase is solved on the CPU and the 
particle phase is parallelly calculated on GPU. The data on gas properties 
and particle properties are stored in CPU memory and GPU memory, 
respectively. Through information communication, the CFD module and 
DEM module can be coupled to numerically study dense gas–solid 
reacting flow. To minimize the unavoidable time consumption during 
the data transfer process, the pinned memory is adopted which can 
significantly reduce the time of data transfer between CPU and GPU. The 
particle information is mapped into the calculation grid to calculate the 
inter-phase interaction force, initial void fraction, heat transfer rates, 
and species consumption before each time-step. Then the CFD solver 
does iteration to solve gas phase. The coupling between the velocity and 
pressure of the gas phase is solved using the SIMPLE algorithm, which is 
a widely used implicit pressure-based scheme for Navier-Stokes equa
tions. Since proposed by Patankar and Spalding [44], the SIMPLE al
gorithm not only provided a remarkably successful implicit method but 
has dominated for decades the field of numerical simulation of incom
pressible flows. Efficient and iterative solvers based on the SIMPLE Al
gorithm have been developed within the framework of the finite-volume 
method, demonstrating reliable and widely applicable results 
[17,45,46]. The governing equations for species and temperature are 
solved by checking numerical convergence. When the convergence is 
achieved after several iterations, it’s time to calculate chemical re
actions. Thus, the gas information of each computational grid can be 
obtained. For the DEM solver, the drag force is firstly obtained referred 
to the gas information transfer from CPU to GPU. Then the diameter, and 
mass are obtained by solving the chemical reaction rates. The position 
and velocity of the particle are calculated by solving the particle motion 
equation. The temperature of the particle is obtained by solving the 

particle energy equation. 
The finite volume method (FVM) is adopted to discretize the gov

erning equations of the gas phase, which are integrated through the first- 
order Euler scheme. During the calculation process, the gas time-step 
(ΔtCFD) is established referred to the Courant-Friedrich-Lewy (CFL) 
condition, which is given by [47]: 

CFL = ΔtCFDmax
(⃒⃒uf

⃒
⃒

Δx

)

< 1 (33)  

where Δx is the characteristic size of grid. The minimum and maximum 
ΔtCFD should be preestablished to guarantee efficiency and convergence. 
The ΔtCFD should be an order of magnitude larger than the solid time- 
step (ΔtDEM) to guarantee numerical stability. In this work, the ΔtDEM 

is specified as 1/50 of the minimum collision time (tcol
n,ij) [48]. Thus, the 

DEM solver makes loops that advance the solid simulation time to the 
gas simulation time. The CFD solver and DEM solver are coupled at each 
ΔtCFD through the source terms of voidage, force interactions, heat 
transfer, and chemical reactions. Note that the heat transfer and 
chemical reactions take place instantly. 

3. Model verification 

It is of great importance to guarantee the simulation accuracy of the 
developed model. Thus, in this section, a series of verification studies are 
given to verify the accuracy of thermochemical sub-models. Specifically, 
the simulation results of individual particle are compared with the an
alytic solutions. Moreover, to avoid the mutual influence, when one heat 
transfer sub-model is being verified, the other heat transfer sub-models 
are not considered. 

3.1. Particle-particle conduction 

The particle–particle conduction is firstly verified because of the 
severe particle–particle collisions in dense gas–solid systems. Two par
ticles are set at different temperatures and the temperature are 373.15 K 
(Tp1) and 278.15 K (Tp2), respectively. The positions of two particles are 
assumed to be fixed. Detailed particle properties are given in Table S2 of 

Tp
Tp
Tp
Tp
Tp
Tp

Fig. 5. Numerical comparison of analytic results and simulation results for particle–particle conduction.  
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the Supporting Information. Each simulation runs for 50 s thus the 
particles can reach a steady temperature. 

In this case, only particle–particle conduction is considered. Thus, 
the temperature of each particle can be calculated by simplifying Eq. 
(18): 

dTp,i

dt
=

4κp,iκp,j

κp,i + κp,j
⋅
Tp,i − Tp,j

miCp,i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
p,j −

(
R2

p,j − R2
p,i + l2

ij

2lij

)2
√
√
√
√ (34) 

As the benchmark for comparison, the analytic temperature can be 
calculated as [30]: 

Tp,i(t) =
1

a + b

[
bT0

p,i + aT0
p,j + a

(
T0

p,i − T0
p,j

)
e− (a+b)t

]
(35)  

Tp,j(t) =
1

a + b

[
bT0

p,i + aT0
p,j − b

(
T0

p,i − T0
p,j

)
e− (a+b)t

]
(36)  

where a and b are the computational constants related to the charac
teristics of particles and are formulated as: 

a =
2

miCp,i

κp,iκp,j

κp,i + κp,j

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
p,j −

(
R2

p,j − R2
p,i + l2

ij

2lij

)2
√
√
√
√ (37)  

b =
2

mjCp,j

κp,iκp,j

κp,i + κp,j

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
p,j −

(
R2

p,j − R2
p,i + l2

ij

2lij

)2
√
√
√
√ (38) 

Fig. 5 presents the numerical comparison of analytic results and 
simulation results for particle–particle conduction. The thermal energy 
transfers through the overlap area until at the same temperatures. After 
about 30 s, the particle temperatures reach a fixed value. The simulation 
results are in line with analytic results. The relative error between an

alytic results and simulation results (e =

⃒
⃒
⃒
Ta

p − Ts
p

Ta
p

⃒
⃒
⃒× 100%) is smaller than 

0.0006 %, which indicates the accuracy of the current model in pre
dicting particle–particle conduction heat transfer. 

To better illustrate the effect of the overlap displacement, the overlap 
displacement is set as different values (i.e., 0.001/0.002/0.003/0.004 
cm). Furthermore, to verify the universality of the current model, two 
particles in the same or different particles (i.e., dp1 = 0.3 cm, dp2 = 0.24/ 
0.3/0.36 cm) are also considered. Fig. 6 presents the comparison of 
analytic results and simulation results under different simulation con
ditions. Simulation results agree well with analytic results under all 
simulation conditions. Specifically, with the increase of the overlap 
displacement, the particle–particle conduction heat transfer is more 
intense and the particles reach the final temperature faster. However, 

Fig. 6. Numerical comparison of analytic results and simulation results: change particle overlap displacement (a) and change particle diameter (b).  

Fig. 7. Numerical comparison of analytic results and simulation results for particle–fluid-particle conduction: untouched particle (a) and touched particle (b).  
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changing overlap displacement has an insignificant influence on the 
final particle temperature. While changing particle diameter, the final 
temperature of two particles is different. When the particles are in 
different diameters, the final temperature is higher than that under the 
same diameters. Thus, the current model can accurately simulate the 
particle–particle conduction. 

3.2. Particle-fluid-particle conduction 

The thermal energy can also transfer through particle–fluid-particle 
conduction in dense particle systems. Specifically, it contains two sub- 
cases: two particles not in contact but in close proximity and two par
ticles in contact (referred to Fig. 7). The simulation setup and charac
teristics of the particles are the same as the previous section. The 
thickness of the gas layer wrapping the particle is 0.036 cm (0.1 dp2). 
Each simulation runs for 100 s to guarantee a steady state of particle 
temperature. 

Eq. (18) can be simplified when only considering the particle–fluid- 
particle conduction heat transfer and the temperature of each particle 
can be calculated as: 

dTp,i

dt
=

κg
(
Tp,j − Tp,i

)

miCp,i

∫ Rout

Rin

2πr

lij −
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
p,i − r2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R2

p,j − r2
√ ) dr (39)  

As the benchmark for comparison, the analytic temperature can be 
calculated as [30]: 

Tp,i(t) =
1

a + b

[
bT0

p,i + aT0
p,j + a

(
T0

p,i − T0
p,j

)
e− (a+b)t

]
(40)  

Tp,j(t) =
1

a + b

[
bT0

p,i + aT0
p,j − b

(
T0

p,i − T0
p,j

)
e− (a+b)t

]
(41)  

where a and b are the computational constants and are formulated as: 

a =
κg

miCp,i

∫ Rout

Rin

2πr

lij −
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
p,i − r2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R2

p,j − r2
√ ) dr (42)  

b =
κg

mjCp,j

∫ Rout

Rin

2πr

lij −
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
p,i − r2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R2

p,j − r2
√ ) dr (43) 

Fig. 7 presents the comparison of analytic results and simulation 

results. For the untouched particle, the thermal flux transfers through 
the shadow region, as shown in Fig. 8(a). After about 20 s, the tem
perature of two particles reaches a steady value. The simulation results 
agree well with analytic results and the relative error is less than 
0.00015 %. However, as for the touched particles, a significant relative 
error can be observed. The reason may lie in that the thermal flux is 
passed through the shadow region in Fig. 8(b). The computational 
constant a and b of analytic results is calculated by solving the integral 
referring to Eqs. (41) and (42). The error caused by the integral solution 
leads to a decrease of the accuracy of analytic results. Thus, the current 
model can accurately simulate the particle–fluid-particle conduction. 

The overlap displacement is set as different values (i.e., 0.001 cm, 
0.002 cm, and 0.018 cm) to further discuss the influences of inter- 
particle distance and overlap displacement. As shown in Fig. 8, chang
ing the overlap displacement significantly influence the temperature 
evolution for the untouched particles. With the increase of displace
ment, the heat transferred through the shadow region decreases. When 
the maximum displacement is 0.018 cm (0.1 dp2), particle temperature 
evaluates to the fixed value at about 70 s. However, changing 

Fig. 8. Numerical comparison of analytic results and simulation results for particle–fluid-particle conduction: untouched particle (a) and touched particle (b).  

Fig. 9. Numerical comparison of analytic results and simulation results for 
particle–fluid convection. 
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displacement has a negligible influence on touched particles due to the 
slight change. 

3.3. Particle-fluid convection 

Fig. 9 presents the comparison of analytic results and simulation 
results for particle–fluid convection. The diameter of the particle is 0.36 
cm and the particle position is fixed. The fluid was introduced from the 
bottom of the system and the velocity is 0.6 m/s. The temperature of the 
particle and fluid are 373.15 K and 298.15 K, respectively. The simu
lation results and analytic results of the particle temperature are 
respectively formulated as: 

dTp,i

dt
=

hpg,iAp,i
(
Tg − Tp,i

)

miCp,i
(44)  

Tp,i(t) = Tg −
(

Tg − T0
p,i

)
e−

hpg,i Ap,i
miCp,i

t (45) 

As shown in Fig. 9, simulation results agree well with analytic re
sults, indicating the accuracy of the current model in simulating the 
particle–fluid convection. The particle temperature decreases to the 
fluid temperature at about 1 s. Referring to Eq. (41), the convective heat 
transfer is calculated based on the particle surface area and convective 
heat transfer coefficient. Thus, the influences of particle diameter and 
fluid velocity on convective heat transfer are numerically studied. As 

dp

dp

dp

dp

dp

dp

Ug

Ug

Ug

Ug

Ug

Ug

Ug

dp

Fig. 10. Numerical comparison of analytic results and simulation results for particle–fluid convection: change particle diameter (a) and change fluid velocity (b).  

Tp
Tp
Tp
Tp
Tp
Tp

Fig. 11. Numerical comparison of analytic results and simulation results for radiation.  
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shown in Fig. 10, the temperature of smaller particle decreases to the 
environmental temperature faster. Moreover, increasing the fluid ve
locity can intensify the particle–fluid convection due to the increase of 
relative velocity (ug - vi). 

3.4. Particle radiation 

The radiation heat transfer is verified through two particles at 
different temperatures. Specifically, the two particles are fixed and close 
to each other. The particle properties are the same as the case of parti
cle–particle conduction. The simulation runs for 300 s and the particle 
temperature can reach a steady value. In the simulation, only radiation 
heat transfer is considered, thus Eq. (18) can be simplified and the 
particle temperature can be calculated as: 

dTp,i

dt
=

ep,iAp,iσ
(

T4
env − T4

p,i

)

miCp,i
= f
(
t,Tp,i, Tp,j

)
(46) 

However, the analytic results of particle temperature are difficult to 
obtain due to the nonlinear dependence. Thus, the standard fourth-order 
Runge-Kutta method is adopted to calculate the particle temperature for 
comparison, which is formulated as [30]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tp,i(tn+1) = Tp,i(tn)+ where Tp,i(t0) = T0
p,i

1
6
(
k1,i + 2k2,i + 2k3,i + k4,i

)

Tp,j(tn+1) = Tp,j(tn)+ where Tp,j(t0) = T0
p,j

1
6
(
k1,j + 2k2,j + 2k3,j + k4,j

)

(47)  

Fig. 12. Numerical comparison of analytic results and simulation results for the chemical reaction: the particle mass (a), species mass fraction (b), and absolute error 
of species mass fraction (c). 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = Δtf
(
tn,Tp,i(tn),Tp,j(tn)

)

k2 = Δtf
(

tn +
Δt
2
,Tp,i(tn) +

k1,i

2
,Tp,j(tn) +

k1,j

2

)

k3 = Δtf
(

tn +
Δt
2
,Tp,i(tn) +

k2,i

2
,Tp,j(tn) +

k2,j

2

)

k4 = Δtf
(
tn + Δt,Tp,i(tn) + k3,i,Tp,j(tn) + k3,j

)

(48) 

Fig. 11 illustrates the comparison of analytic results and simulation 
results. After about 250 s, the temperatures of two particles reach steady 
values. The relative error is less than 0.00002 %, indicating the accuracy 
of the current model in predicting particle radiation. 

3.5. Chemical reaction 

Besides the heat transfer sub-models, the verification of chemical 
reactions is also of great importance. In this section, a specified het
erogeneous reaction is given by:  

A(g) + 2B(s) → C(g) + D(s)                                                           (49) 

where A and C are the gaseous substances while B and D are active 
solid substances. At the initial time, the particle contains B and the inert 
solid phase I. The reaction rate is assumed as the disappearance rate of B 
(− rB) and is set as constant. The reaction or formation rate of each 
species is given by: 

− rA

MA
=

1
2
− rB

MB
=

rC

MC
=

rD

MD
(50)  

where ri and Mi represent the reaction rate and mass of each species i, 
respectively. The particle mass and species mass fraction (Xi) can be 
calculated as: 

dmp

dt
= − rB

(
1
2

MD

MB
− 1
)

(51)  

d
dt
(
XBmp

)
= − ( − rB),

d
dt
(
XDmp

)
=

1
2

MD

MB
( − rB),

d
dt
(
XImp

)
= 0

(52)  

As the benchmark for comparison, the analytic results of the mass and 
species mass fractions of particles are given by [30]: 

m(t) = mp0 − t( − rB)

(
1
2

MD

MB
− 1
)

(53)  

XB(t) =
mp0XB0 − ( − rB)t

mp0 − t( − rB)

(
1
2

MD
MB

− 1
) (54)  

XD(t) =
mp0XD0 − ( − rD)t

mp0 − t( − rB)

(
1
2

MD
MB

− 1
) (55)  

XI(t) =
mp0XI0

mp0 − t( − rB)

(
1
2

MD
MB

− 1
) (56) 

Fig. 12(a) shows the numerical comparison of particle mass and 

relative error (e =
|ma

p − ms
p|

ma
p

× 100%). The particle mass decreases and 

reaches a fixed value at about 1.5 s. The relative error is less than 0.0008 
%. Fig. 12(b) and (c) illustrate species mass fraction and its absolute 
error. The mass fraction of reactant B decreases until zero at about 1.5 s 
while the mass fraction of product D increases. The mass of solid phase I 
is equal to the initial time while its mass fraction increases because of the 
decrease in particle mass. Notable, the absolute error (e = |Xa − Xs|) is 

used for comparison in Fig. 12(c) because the analytic solution of species 
mass fraction for species B goes to zero, leading to a division by zero. The 
absolute error of species mass fraction is less than 3 × 10-5. Thus, the 
current model can accurately simulate the heterogeneous reaction. 

4. Model validation and application 

The assessment of the model’s accuracy includes verification and 
validation. For the former, simulation results often compare with ana
lytic solutions to illustrate the precision of the model. While for the 
model validation, the experimental results are chosen as the basis of 
comparison to illustrate the model’s accuracy. In the previous section, 
the precision of the developed model has been detailed discussed. Thus, 
the accuracy of the developed model needs to be further validated. A lot 
of studies have been done to validate the accuracy of the current model 
in predicting the flow characteristics of gas–solid flow. Since this work 
focuses on the implementation of heat and mass transfer model, we only 
take the fully 3D spout-fluidized bed as an example to illustrate the flow 
validation, which can be found in Appendix A of the Supporting Infor
mation. Thus, in this section, the accuracy and reliability in numerically 
predicting the heat transfer and complex chemical reaction behavior are 
further validated in various experimental systems. 

4.1. Heat transfer behavior in a BFB 

The GPU-accelerated CFD-DEM reactive model is first validated by 
simulating the particle heat transfer process experimentally carried out 
by Patil et al. [49]. Fig. 13 presents the geometry configuration of the 
BFB, which is 0.08 m in width, 0.25 m in height, and 0.015 m in depth. 
The particles are 2500 kg/m3 in density and 1.0 mm in diameter. Par
ticles are initially packed at the lower part of the system and the initial 
temperature is 90 ℃. Based on the experimental setup, the total mass of 
particles is set as 75 g and 125 g, and the number of particles is 57,296 
and 95,493, respectively. The fluidized gas is introduced from the 

T

T

Fig. 13. Geometry configuration of the BFB.  
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bottom and the superficial velocity is 1.54 m/s. The gas temperature is 
20 ℃, thus the particles are cooled. Each simulation runs for 10 s and 
simulation parameters are detailed listed in Table S3 of the Supporting 
Information. To quantitatively validate the accuracy of the current 
model in simulating the heat transfer behavior, the mean particle tem
perature (Tp) is calculated for comparison: 

Tp =
1
n

∑n

i=1
Tp,i (57)  

where n is the total number of particles in the system. 
Fig. 14 shows the particle temperature distribution in the BFB using 

both GPU-accelerated CFD-DEM and CPU-based CFD-DEM models. A 
similar distribution of particle temperature can be observed under two 
models. At 5 s and 10 s, a narrow cold particle zone can be observed at 
the center of the system. The generation of the cold zone may be caused 
by the cold fluidized gas introduced from the bottom. Thus, before 
moving upwards to the bed surface, the hot particles exchange more 
heat with cold gas. Fig. 15 shows the comparison of Tp between the 

Fig. 14. Snapshots of solid motions and temperature distribution in BFB for m = 75 g (a, b) and m = 125 g (c, d); through GPU-accelerated CFD-DEM simulation (a, c) 
and CPU-based CFD-DEM simulation (b, d). 
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experiment results and simulation results using both GPU-accelerated 
CFD-DEM and CPU-based CFD-DEM models. The Tp linearly reduces 
from 90 ℃ to about 60 ℃ at t = 10 s for the mass of 75 g, while about 
65℃ for the mass of 125 g, respectively. The current GPU-accelerated 
CFD-DEM model can successfully capture the particle temperature 
under two conditions, which demonstrates the accuracy and reliability 
in numerically predicting the heat transfer behavior in the particle 
cooling process in a BFB. 

4.2. Coal-fueled chemical looping gasification 

The GPU-accelerated CFD-DEM reactive model is then applied to 
numerically study the coal-fueled chemical looping gasification (CLG) 
process experimentally studied by Chen et al. [50]. As presented in 
Fig. S4 of the Supporting Information, a quasi-3D CLG system is 

established referred to the experimental unit, which is 0.45 m in height 
and 0.038 m in width. The density of the oxygen carriers and coal 
particles are 3734 kg/m3 and 1540 kg/m3, respectively. The diameter of 
coal particles and oxygen carriers is the same which is 0.48 mm. The 
mass ratio of coal particles to oxygen carriers is 2.4: 100. The fluidized 
gas is introduced from the bottom at the superficial velocity of 0.24 m/s 
which is the mixture of H2O/N2 and the molar ratio is 1:1. The simu
lation case runs for 20 s and detailed operating parameters are listed in 
Table S4 of the Supporting Information. 

The variation of gas products at the outlet with time is shown in 
Fig. 16(a). At about 1 s, the produced gas moves upwards and escapes 
from the outlet of the reactor. After about 7 s, the concentration of each 
type of gas species fluctuates around a constant value, which demon
strates that the chemical reactions reach the dynamics equilibrium state. 
Fig. 16(b) shows the comparison of the gas composition at the outlet 

Fig. 15. Comparison of mean particle temperature between experimental data, GPU-accelerated CFD-DEM simulation results, and CPU-based CFD-DEM simulation 
results: (a) m = 75 g; (b) m = 125 g. 

Fig. 16. (a) Variation of gas products at the outlet with time; (b) comparison of the gas composition at the outlet between experiment results, GPU-accelerated CFD- 
DEM simulation results, and CPU-based CFD-DEM simulation results. 
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between the experiment results and simulation results using both GPU- 
accelerated CFD-DEM and CPU-based CFD-DEM models. The current 
GPU-accelerated CFD-DEM model successfully predicts the gas compo
sition. The slight errors may be caused by the simplification of complex 
chemical reactions. Fig. 17 presents the variation of flow patterns with 
time using both GPU-accelerated CFD-DEM and CPU-based CFD-DEM 
models. In the lower part, small bubbles are generated because of the 
introduction of fluidized gas and coalesce into large bubbles and further 

rise until they burst near the bed surface. Fig. 18 shows the mass fraction 
distribution of gas species at t = 20 s using both GPU-accelerated CFD- 
DEM and CPU-based CFD-DEM models. The CO2 is primarily produced 
in the upper region of the dense area due to the efficient mixing capa
bilities of particles. The distribution of H2 and CO is similar, which is 
higher near the wall because of the higher concentration of char parti
cles near the wall. Thus, the current model can accurately predict the 
thermochemical behavior in the coal-fueled CLG process. 

Fig. 17. Particle flow patterns in the reactor (colored by particle vertical velocity): GPU-accelerated CFD-DEM simulation (a) and CPU-based CFD-DEM simula
tion (b). 
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5. Speed-up performance 

This section is to illustrate the speed-up performance of the GPU- 
accelerated heat transfer and chemical reaction sub-models. Table 2 
lists the main subroutines developed for the heat transfer and chemical 
reaction sub-models of the GPU-accelerated CFD-DEM reactive model. 
Notably, the speed-up performance in this section is assessed through 
the coal-fueled CLG process validated in section 4.2, where the simu
lation details and analysis of results are provided. The speed-up ratio 
presented in Fig. 19 is calculated by comparing the simulation time of 
the GPU-accelerated model with the CPU-based model where 1 CPU core 
is used in the CPU simulation. The CPU-based CFD-DEM reactive model 
used in this section has been validated in our previous work and more 
details of this model can be found in Yu et al. [38]. Simulation cases are 
performed on a cluster with AMD EPYC 7H12 CPUs @ 2.6 GHz and 

NVIDIA A800 GPU. As shown in Fig. 19, the computational time can be 
greatly reduced through the GPU-accelerated method. The speed-up 
performance of the GPU-accelerated reactive model is highly relevant 
to the structure of code, thus different speed-up performances can be 
seen in Fig. 19. The highest speed-up ratio can achieve 289 for the react- 
new subroutine and the speed-up performance of other subroutines are 
also ideal. Fig. 20 shows the comparison of particle calculation time 
consumption under different calculated conditions. Due to the complex 
thermochemical behavior calculation, the traditional parallel algorithm 
using 8 or 16 CPU cores can obtain nearly 2 times or 4 times accelera
tion, respectively. Comparably, the GPU-accelerated reactive model can 
further accelerate the particle process, which can obtain nearly 6 times 
acceleration similar to using 32 CPU cores. Thus, the GPU-accelerated 
strategy is demonstrated to perform great speed-up performance and 
stability. 

Table 3 details the GPU development and application in the last few 
years. Different methods and software are used to illustrate the accel
eration performance of GPU-accelerated methods. It is noted that similar 
speed-up performance can be achieved using different models. However, 
these studies only focus on hydrodynamics without considering the 
thermochemical behavior, which limits its application in numerically 
studying dense gas–solid reacting systems. Considering the high cost of 
GPUs and the potential communication overhead between CPUs and 
GPUs, there is a need for additional improvements in the economic 
performance of CFD-DEM simulations. However, it should be noted that 
the GPU-accelerated CFD-DEM method offers practical advantages and 
can deliver better speed-up performance for users who have laptops 

Fig. 18. Mass fraction distribution of gas species in the reactor at t = 20 s: GPU-accelerated CFD-DEM simulation (a) and CPU-based CFD-DEM simulation (b).  

Table 2 
The list of the main subroutines developed for the heat transfer and chemical 
reaction sub-models of the GPU-accelerated CFD-DEM reactive model.  

Subroutine Description 

Thermo_cond Calculate the particle conduction heat transfer rate. 
Thermo_conv Calculate the convection heat transfer rate. 
Thermo_rad Calculate the radiation heat transfer rate. 
React_rates Calculate the reaction heat transfer rate and interphase mass 

transfer based on the specific reaction kinetics. 
Thermo_new Update the temperature of particles. 
React_new Update the density, species composition, and mass of particles.  

J. Yu et al.                                                                                                                                                                                                                                       



Chemical Engineering Journal 484 (2024) 149480

17

equipped with a GPU card. This is particularly beneficial for those who 
require efficient simulation capabilities on portable computing devices. 
The GPU-accelerated method will be optimized even further, and the 
price of GPUs may decrease in the future. Consequently, the GPU- 
accelerated method shows great promise in simulating dense gas–solid 
reacting flow. 

6. Conclusions 

In this work, a GPU-accelerated CFD-DEM reactive model is devel
oped, featuring heat transfer, homogenous reactions, and heterogeneous 
reactions. The accuracy, reliability, and acceleration performance of the 
developed model are examined under different conditions. Conclusions 
are summarized as follows:  

1) In the GPU-accelerated CFD-DEM reactive model, the CPU and GPU 
can be coupled to complete the complex calculation, which is called 
heterogeneous computing. The code consists of the host code on the 
CPU and the device code on the GPU. The data on gas properties and 

Fig. 19. Performance comparison of the main subroutines for the heat transfer and chemical reaction sub-models between the CPU-based CFD-DEM reactive method 
and the GPU-accelerated CFD-DEM reactive model. 

Fig. 20. Comparison of particle calculation time consumption under different 
calculated conditions. 

Table 3 
GPU development and application to dense particulate flow.  

References Model 
details 

Device 
details 

Computational 
details 

Speed-up 
performance 

He et al. 
(2020)  
[43] 

ANSYS 
Fluent +
Inhouse 
code 
HiPPs, 
CFD-DEM 

Intel 
XEON E5- 
2650V4, 
NVIDIA 
Tesla 
P100 

Large-scale 
fluidized bed with 
1,327,104 
particles 

3.81 versus 
OpenMP and 
6.31 times 
speedup versus 
MPI on 32 CPU 
cores 

Tian et al. 
(2017)  
[51] 

Inhouse 
code, 
GPU- 
based 
DEM 

Intel 
XEON E5- 
2630, 
NVIDIA 
Tesla K80 

Hopper flow with 
8,000,000 
particles 

10.39 in 16 
GPUs vs 128 
CPU cores 

Lu et al. 
(2022)  
[21] 

MFiX, 
CFD-DEM 

Intel 
XEON 
Gold 
6148, 
NVIDIA 
Tesla 
P100 

Particle packing 
process with 
100,000 particles 
Bubbling fluidized 
bed with 
1,320,000 
particles 

120–130 for 
DEM simulation 
15 for CFD-DEM 
simulation 

Gan et al. 
(2016)  
[52] 

Inhouse 
code, 
GPU- 
based 
DEM 

Intel 
XEON E5- 
2604, 
NVIDIA 
Tesla K20 
M 

Particle packing 
process with 
300,000 particles 

40–75, 
depending on 
the parallel 
algorithms used 

Sousani 
et al. 
(2019)  
[53] 

ANSYS 
Fluent +
EDEM, 
CFD-DEM 

NVIDIA 
Quadro 
GP100 

Aggregate dryer 
demonstrating the 
fluid with 539,942 
particles 

6 for 1 GPU vs 
30 CPUs for 
DEM 
1.5 for 12 CPUs 
for CFD + 1 GPU 
for DEM vs 12 
CPUs for CFD +
30 CPUs for 
DEM  
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particle properties are stored in CPU memory and GPU memory, 
respectively. Through information communication, the CFD module 
and DEM module can be coupled to numerically study the dense 
gas–solid reacting flow.  

2) The accuracy of the GPU-accelerated heat and mass transfer sub- 
models are detailly verified and simulation results are in line with 
analytic solutions. Additionally, this model can accurately capture 
the thermochemical behavior of the particle cooling process and the 
coal-fueled chemical looping gasification process, confirming its 
reliability in simulating dense gas–solid reacting systems.  

3) The GPU-accelerated strategy is demonstrated to perform great 
speed-up performance. The highest speed-up ratio can achieve 289 
for the react-new subroutine and the speed-up performance of other 
subroutines are also satisfactory. For the particle calculation, the 
GPU-accelerated reactive model can obtain nearly 6 times accelera
tion, which is faster than the traditional parallel algorithm using 8 or 
16 CPU cores. 
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