Journal of Materials Chemistry A

PAPER

Check for updates

Cite this: J. Mater. Chem. A, 2024, **12**, 24285

Received 4th April 2024 Accepted 8th August 2024 DOI: 10.1039/d4ta02309a

rsc.li/materials-a

Cheng Lian

scale electrochemical simulation methodologies and materials design strategies based on interface thermodynamics and endeavors to the application of new energy conversion systems including lithium metal batteries and all-solid-state batteries.

Cheng Lian received his PhD

degree from East China Univer-

sity of Science and Technology

(ECUST) in 2017. He then carried

out postdoctoral research at

University College London and

Utrecht University. Now he is

a professor at the School of

Chemistry and Molecular Engi-

neering, ECUST. His research

focuses on molecular thermody-

namics and its application in

energy conversion chemistry and

engineering. He develops multi-

Evolution of high spin state single-atom catalyst active centers in Na-O₂ batteries†

Jing Li, \ddagger^a Aixiang Mao, \ddagger^a Jia-hui Li, \textcircled{D}^{*a} Honglai Liu^{ab} and Cheng Lian \textcircled{D}^{*ab}

Due to the abundance and economic viability of Na resources, $Na-O_2$ batteries are regarded as promising energy storage devices in achieving the carbon neutrality goals, featuring an ultra-high theoretical energy density. Nevertheless, the slow ion diffusion kinetics hinders the applications of batteries. Spin-induced single-atom catalysts (SACs) offer a promising avenue to ameliorate the activation process of the battery reaction. Herein, we study the adsorption–activation mechanism of O_2 on six spin-induced SACs (*i.e.*, MnN₃, MnN₄, CoN₃, CoN₄, NiN₃, and NiN₄) in Na–O₂ batteries. We find that oxygen in mono-vacancy catalysts with high spin states favors the side-on adsorption mode. This mode enhances the coupling between the $3d_{xy}$ orbital of metal and O_2 , and alters the active center structures which further reduces the reaction overpotential by cutting down the OER potential. Moreover, we establish the scaling relationship between the oxygen adsorption–activation process which strongly determines the battery performance. The established structure–activity relationship of spin induced SACs may shed light on the catalyst modification involving the oxygen adsorption and activation to achieve a better performance.

Introduction

The advancement of next-generation energy storage technologies with exceptional energy density plays a pivotal role in achieving the carbon neutrality goals.1-4 Nonetheless, the current lithium-ion batteries, boasting an energy density of 300 W h kg $^{-1}$, fall short of meeting the requirements of prolonged lifespan devices such as electric vehicles. Metal-air batteries are renowned for their significant theoretical energy density, which is attributed to the use of inexhaustible oxygen from the air as the cathode active material, positioning them as one of the most promising energy storage devices capable of replacing lithiumion batteries. For the first time in 2011, a Na-O₂ battery with polymer electrolytes was assembled and tested at 100 °C for over 140 cycles.⁵ Later, a pioneering room-temperature Na-O₂ battery with an ether-based electrolyte exhibited discharge capacities of over 300 mA h g⁻¹ and a charging overpotential lower than 0.2 V.6 Recently, a remarkable average coulombic efficiency as high as 97% during 80 cycles was achieved with a discharge capacity of 1000 mA h g^{-1} by Chen *et al.*⁷ Moreover,

 N_3 at 1200 K; the mechanisms of adsorption–activation on CoN_x and NiN_x and the corresponding charge distribution; the PDOS of free O_2 and O_2 (a) MN_x ; the relative energy profiles of the proximal path and the distal diffusion of the Na atom on CoN_x and NiN_x ; the comparison of adsorption modes of the two coordination types. See DOI: https://doi.org/10.1039/d4ta02309a ‡ These authors contributed equally to this work.

Published on 09 August 2024. Downloaded by Zhejiang University on 11/18/2024 2:50:47 AM.

View Article Online

View Journal | View Issue

[&]quot;School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. E-mail: jiahuili@ecust.edu.cn; liancheng@ecust.edu.cn

^bState Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China † Electronic supplementary information (ESI) available: The optimized structure of MN_x and Na, O_2 , and Na_yO_2 adsorbed on these six catalysts; the variations of relative energy against the time for AIMD simulations of (OMO)

Na is more widely available in the Earth's crust compared to lithium and cost-effective.^{8,9} The abundance and economic viability of sodium resources confer an absolute advantage for the practical implementation of Na–O₂ batteries. Such a battery system offers the potential for advanced energy storage (theoretically up to 1100 W h kg⁻¹ based on NaO₂) and the opportunity to reduce carbon emissions significantly.

Although the Na-O₂ battery has the above advantages, the sluggish ion diffusion kinetics attributed to the size effect of sodium hinders the battery practical application.¹⁰⁻¹² One possible way to relieve the reaction kinetics is seeking an appropriate catalyst for the Na-O2 battery. Co3O4, as a transition metal oxide (TMO) catalyst, has been demonstrated to mitigate the sluggish kinetics of both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in Na-O₂ batteries through a hierarchical charge and discharge mechanism, facilitated by the spin interaction between NaO2 and catalysts.13 But the role of spin in unraveling the precise mechanism of interaction remains unclear. In the meantime, the large bandgap of TMOs often represents an undeniable challenge to the cycling stability of the battery.14 Alternatively, single-atom catalysts (SACs) present a promising avenue, offering outstanding conductivity and a readily modulated coordination milieu that serve to enhance the adsorption and desorption of reactants.15 Furthermore, owing to their characteristic 2D nature, SACs exhibit a vast specific surface area that facilitates the accommodation of sizable sodium ions and discharge products.16 Inspired by the spin interaction between the metal and oxygen molecules, SACs with a magnetic metal active center, characterized by multiple spin states, may be better candidates for efficiently catalyzing Na-O2 batteries. Nevertheless, the mechanism linking the spin states to the reactivity in Na-O₂ battery reactions remains elusive. There is a lack of reports on the impact of spin states on the real active centers of spin SACs in Na-O₂ batteries. In other words, whether the spin state effects changes in the active center and how the active center evolves remain unclear.

Here, we investigate the reaction mechanism of six catalysts featuring transition metals Mn, Co, Ni, and N co-anchored on graphene in Na-O₂ batteries. Two coordination types, specifically threefold-coordinated and fourfold-coordinated, are considered, corresponding to carbon mono-vacancy and double-vacancy structures, denoted as MnN₃, MnN₄, CoN₃, CoN_4 , NiN₃, and NiN₄. The MN₃ catalysts (M = Mn, Co, and Ni) exhibit a high spin state compared to the MN₄ catalysts. We observe that the high spin state induces the side-on adsorption mode of oxygen, with the strong oxygen adsorption strength in MN₃ catalysts. This oxygen adsorption mode causes formation of composite intermediates during oxygen activation. We elucidate the formation mechanism of composite intermediates and the influence on the active center. Furthermore, oxygen adsorption energy is observed to be a desirable descriptor of the overpotential of Na-O₂ batteries. Through this exploration, the evolution mechanism of SACs induced by the high spin state and corresponding impact on the active center is clarified, which enriches the comprehension of spin SACs in the catalytic reactions involving oxygen adsorption-activation.

Methods

The geometry optimizations and energy calculations are approached by the Vienna Ab initio Simulation Package (VASP).17 The generalized gradient approximation (GGA) functional externalized by Perdew, Burke, and Ernzerhof (PBE)18 is incorporated to describe the exchange-correlation energy within the Projector Augmented Wave (PAW) form.¹⁹ To ensure the calculation accuracy, a cutoff energy of 500 eV is adopted. The spin-polarized calculations are conducted until the selfconsistent electronic energies and the ionic relaxation converged within 1×10^{-5} eV and 0.02 eV Å⁻¹, respectively. In all calculations, the van der Waals (vdW) interactions are estimated through the DFT-D3 method interpreted by Grimme.²⁰ The Brillouin zone is sampled using a Monkhorst–Pack 3 \times 3 \times 1 k-point grid. A 7 \times 8 supercell carbon substrate is set. The threefold-coordinated catalyst model includes 108 carbon atoms, 3 nitrogen atoms, and 1 metal atom, while the fourfoldcoordinated catalyst model comprises 106 carbon atoms, 4 nitrogen atoms, and 1 metal atom. The GGA + U_{eff} method is applied to account for the strongly localized d orbitals of Mn, Co, and Ni in the selected structures. The Hubbard $U_{\rm eff}$ values for Mn, Co, and Ni are chosen to be 3.9,²¹ 5.3,²² and 5.3,^{23,24} respectively. The vacuum layer is set to be 25 Å for all the simulations to eliminate the interaction between adjacent molecular layers. The transition states of the O2 activation and Na migration are implemented by the climbing image nudged elastic band (CI-NEB) method^{25,26} at a reduced force criterion of 0.05 eV $Å^{-1}$. The obtained transition state is further verified by vibrational frequency calculation, and only one imaginary frequency is obtained for each transition state.

The formation energy (E_f) of metal atoms with the MN_x is defined as:

$$E_{\rm f} = E_{\rm MNx} - E_{\rm NC} - E_{\rm M} ({\rm M} = {\rm Mn, Co, and Ni})$$
(1)

where E_{MNx} is the total energy of catalysts MN_x . E_{NC} is the energy of N-doped graphene with vacancies. E_M is the energy of the metal atom in the most stable bulk phase.

To evaluate the adsorption strength of Na, O₂, and the reaction intermediates Na_yO_2 (y = 1, 2, 3, and 4) on the substrate MN_x, their adsorption energies (E_{ads}) are calculated as

$$E_{\rm ads}(\rm Na) = E_{\rm Na@sub} - E_{\rm sub} - E_{\rm Na}$$
(2)

$$E_{\rm ads}(O_2) = E_{O_2@{\rm sub}} - E_{\rm sub} - E_{O_2}$$
(3)

$$E_{ads}(Na_yO_2) = E_{Na_yO_2@sub} - E_{sub} - E_{Na_yO_2}$$
(4)

where $E_{\text{Na}@\text{sub}}$, $E_{\text{O}_2@\text{sub}}$, and $E_{\text{Na}_y\text{O}_2@\text{sub}}$ stand for the total energy of Na, O₂, and Na_yO₂ adsorbed on the MN_x, respectively. E_{sub} is the energy of the MN_x substrate. E_{Na} , E_{O_2} , and $E_{\text{Na}_y\text{O}_2}$ denote the energy of the Na atom in the bulk phase structure, a free O₂ gas and Na_yO₂, respectively.

The reaction Gibbs free energy (ΔG) can be expressed as

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + ne U \tag{5}$$

where ΔE is the electronic energy difference of the reaction. ΔZPE and ΔS denote the variations in zero-point energy and entropy, respectively. *neU* is the free energy contribution of the applied electrode potential.

The overpotential (η) is used to estimate the catalytic properties of doped SACs:

$$\eta_{\rm ORR} = U_0 - U_{\rm dc} \tag{6}$$

$$\eta_{\rm OER} = U_{\rm c} - U_0 \tag{7}$$

$$\eta_{\rm TOT} = \eta_{\rm ORR} + \eta_{\rm OER} \tag{8}$$

where U_0 , U_{dc} , and U_c are the equilibrium, discharging, and charging potentials, respectively. U_{dc} is the maximum prerequisite voltage where all discharging steps are exothermic, while U_c indicates that the minimum prerequisite voltage for all charging steps is exothermic. The total overpotential, η_{TOT} , is the sum of the overpotentials in the ORR and OER processes.

The occupied d-band center (ϵ_d) of the metal atom was calculated by

$$\varepsilon_{\rm d} = \frac{\int_{-\infty}^{E_F} \rho(E) E dE}{\int_{-\infty}^{E_F} \rho(E) dE}$$
(9)

where $\rho(E)$ represents the projected density of states of the specified orbital. $E_{\rm f}$ is the Fermi energy.

Results and discussion

Geometries, spin properties, and stabilities of catalysts MN_x

Two types of SAC models, i.e., threefold-coordinated and fourfold-coordinated configurations, are taken into account to regulate the spin state of the active atoms based on the motifs determined via experimental characterization and related theoretical studies.²⁷⁻³¹ Mn, Co, and Ni atoms are anchored on N-doped graphene with single and double carbon vacancies, denoted as MnN₃, MnN₄, CoN₃, CoN₄, NiN₃, and NiN₄, respectively (Fig. 1a and S1[†]). The optimized geometric structures of MN_x (M = Mn, Co, and Ni, x = 3 and 4) are shown in Fig. S2.[†] Fig. 1b shows the M–N bond length (l_{M-N}) of MN₃ and MN₄ catalysts. The trend of l_{M-N} is consistent with the atomic radius order: Mn > Co > Ni. The calculated $l_{\rm Co-N}$ of CoN₄ is 1.89 Å, which is close to the experimental data (1.90 Å (ref. 32)), showing the accuracy of our study. The spin magnetic moments of Mn, Co, and Ni in the threefold-coordinated catalysts are 4.00, 2.01, and 0.83 $\mu_{\rm B}$, respectively, exceeding those of fourfoldcoordinated catalysts, which are 3.31, 1.00, and 0 $\mu_{\rm B}$ for Mn, Co, and Ni, respectively (Table 1). In particular, we find that the spin magnetic moment disappears in NiN4 which is consistent with a previous study.³³ The stability of the metal atoms in the MN_x catalysts is evaluated by calculating the formation energy (Fig. 1c). The negative formation energies of MN_x imply exothermicity during their formation, elucidating the thermodynamic stability of these catalysts. The $E_{\rm f}$ of MnN₃, CoN₃ and NiN₃ is -1.14, -2.82 and -2.88 eV, respectively, which indicates the NiN₃ catalyst is the most stable structure. The $E_{\rm f}$ of MnN₄, CoN₄ and NiN₄ is -6.44, -7.37 and -7.02 eV, respectively,

Fig. 1 (a) Top (upper) and side (lower) view diagrams of the MN_x structures. (b) The M–N bond length (l_{M-N}) in the different optimized MN_x structures. (c) The formation energy (E_f) of MnN₃, CoN₃, NiN₃, MnN₄, CoN₄, and NiN₄.

Table 1 The spin magnetic moments (M) of the metal atoms in the six spin catalysts in units of $\mu_{\rm B}$

Catalysts	$M_{ m Mn}$	$M_{ m Co}$	$M_{ m Ni}$
MN ₃	4.00	2.01	0.83
MN_4	3.31	1.00	0

which indicates the CoN_4 catalyst is the most stable. Comparing the formation energies of MN_3 and MN_4 , the fourfoldcoordinated catalysts have more negative E_f , denoting their higher structural stability than the threefold-coordinated catalysts.

Reaction mechanism catalyzed by spin-induced SACs

To delve into the impact of spin states on battery reactions, it is imperative to elucidate the precise reaction mechanism of the Na–O₂ batteries catalyzed by MnN₃, CoN₃, NiN₃, MnN₄, CoN₄, and NiN₄. In aprotic solvents, the main reaction in the battery is the formation and decomposition of sodium oxides corresponding to the discharging oxygen reduction reaction and the charging oxygen evolution reaction. There exist two main sodium oxides in the reaction mechanism, *i.e.* NaO₂ and Na₂O₂ (eqn (10) and eqn (11)).⁶ The detailed schematic diagram of the reaction pathway is illustrated in Fig. 2a. The activation of battery reactions involves two divergent paths,

$$Na + O_2 \rightleftharpoons NaO_2, E^o = 2.27 V$$
 (10)

$$2Na + O_2 \rightleftharpoons Na_2O_2, E^o = 2.33 V$$
(11)

characterized by the distinction in adsorption preference between the substrate and the Na and O_2 . Thus, the adsorption

Fig. 2 (a) The reaction pathway schematic diagram. (b) The side (upper) schematic diagram of the adsorption modes of O_2 and the top (lower) schematic diagram of the adsorption modes of Na on MN_x structures. (c) The adsorption energy of O_2 ($E_{ads}(O_2)$) and Na ($E_{ads}(Na)$) on MnN₃, CoN₃, NiN₃, MnN₄, CoN₄, and NiN₄. (d) The relationship between the adsorption energy of O_2 ($E_{ads}(O_2)$) and the O–O bond length (l_{O-O}).

behavior of O_2 and Na on catalysts plays a critical role in determining the initial nucleation of NaO_2 .

In order to investigate the nucleation mechanism of NaO_{2} , the adsorption energies of O₂ and Na on the six substrates are calculated. In threefold-coordinated catalysts, the adsorption energies of O₂ are -6.75, -4.80, and -3.99 eV for MnN₃, CoN₃ and NiN₃, respectively. The most negative oxygen adsorption energy on MnN₃ shows that O₂ promises the strongest adsorption strength. Moreover, the O2 interacts with MN3 via the sideon adsorption mode, characterized by the slight distortion of the N-doped graphene monolayer and the obvious protrusion of the metal atom out of the plane, leading to shorter M-O bond lengths (l_{M-O}) (Fig. 2b and S3 and S4[†]). In the fourfoldcoordinated catalysts, the adsorption energies of O_2 are -1.58, -1.00, and -0.72 eV for MnN₄, CoN₄, and NiN₄, respectively, indicating that the adsorption of O2 on MnN4 is the most beneficial. Unlike MN₃ catalysts, the O₂ is adsorbed and activated on the MN₄ catalysts through the end-on adsorption mode, with the Ni and Co atoms located in the plane. Nevertheless, in the case of MnN₄, the slightly protruding plane of the Mn atom may be attributed to the larger atomic radius of Mn. The side-on mode for O₂@MN₃ and end-on mode for O₂@MN₄ are also supported by literature data, as shown in Table S1.† Comparing the adsorption energy of oxygen on MN₃ and MN₄, the more negative adsorption energy of oxygen on MN₃ indicates a stronger adsorption capability. For the adsorption of Na on MN₃, the adsorption energies are -3.98, -2.29, and -0.76 eV for MnN₃, CoN₃, and NiN₃, respectively, indicating that the adsorption of Na on MnN₃ is energetically the most favorable. Na atoms tend to be captured with the top-on site via the formation of three Na-N bonds (Fig. 2b and S5[†]). In terms of the

Na adsorbed on MN_4 , the adsorption energies are 0.40, 0.52, and 0.17 eV for MnN_4 , CoN_4 , and NiN_4 , respectively. The hole-on site of MN_4 facilitates the adsorption of Na. The top-on mode for Na@MN₃ and hole-on mode for Na@MN₄ are also supported by literature data, as shown in Table S2.† More importantly, the adsorption energy of oxygen on the six substrates is observed to be consistently lower than that of Na on these substrates, implying that path I has a thermodynamic advantage over path II. This is due to the nucleophilic nature of O_2^- , which makes it more predisposed to acquiring electrons from the substrate compared to the electrophilic nature of Na^+ . The adsorption state of the reactant impacts the reaction mechanism,³⁴ and thus it is necessary to figure out the reason why there are two distinct oxygen adsorption modes.

To further explore the adsorption modes of O₂, the O–O bond length (l_{O-O}) after adsorption is investigated. For threefoldcoordinated catalysts, the l_{O-O} of O₂@MnN₃, O₂@CoN₃, and O₂@NiN₃ is 1.42, 1.39, and 1.35 Å, respectively. And the l_{O-O} of 1.42 Å in O₂@MnN₃ can be verified by AIMD simulation (Fig. S6–S8†). For fourfold-coordinated catalysts, the l_{O-O} of O₂@MnN₄, O₂@CoN₄, and O₂@NiN₄ is 1.31, 1.27, and 1.25 Å, respectively. The O–O bond lengths of O₂@MN₃ and O₂@MN₄ are incremental for Ni, Co, and Mn catalysts, which is consistent with the change of the adsorption energy (Fig. 2d). The O–O bond length of the adsorbed O₂ exhibits a significant degree of elongation compared with the bond length (1.23 Å) of a single O₂ molecule, reflecting the activation of O₂.

To clarify the differences in the O_2 activation process, we take Mn catalysts as an example due to their longest l_{O-O} . During the initial activation of O_2 on MnN₃, one oxygen atom deviates around another oxygen atom. The entire oxygen molecule

Paper

experiences a slight shift and rotation around the Mn atom. There exists a continuous transfer of electrons between Mn and O_2 , leading to corresponding changes in the spin distribution during this process (Fig. 3a). The transitioning from the initial state (IS) to state II (reaction coordination II in Fig. 3b) represents an oxygen adsorption and activation process, as evidenced by reaching an activation bond length of oxygen (1.3 Å (ref. 35)) with a value of 1.4 Å in state II. During the transition from state II to the final state (FS), the slight change in the O–O bond length indicates an adjustment to maximize the overlap between the active oxygen and the substrate electron, leading to increased system stability with a 9.85 eV release. In addition to the continuous stretching of O–O bond length during the whole activation process, the Mn center also moves outward from the graphene plane. A continuous decrease in the total energy of the process (Fig. 3b) manifests a thermodynamic self-regulation behavior, which can be attributed to the formation of a composite intermediate, namely (OMnO)N₃. The energy released during the formation process of (OMnO)N₃ primarily consists of two factors: the energy generated by O₂ activation and the energy generated by the evolution of the Mn center. For MnN₄, the activation process of O₂ requires an energy barrier of 0.63 eV to be overcome, which closely resembles the O₂ activation energy barrier on FeN₄ of about 0.45 eV (ref. 36) (Fig. 3d and e). The O–O bond length is maintained around 1.3 Å. The rotation of O₂ around the *z*-axis mainly involves the adjustment of spatial overlap between the O₂ molecular orbital and the Mn d_z² orbital (Fig. 3d side view). It can also be observed that the

Fig. 3 (a) The schematic diagram of the configuration change of oxygen activation on MnN_3 and corresponding spin-charge density. (b) The height of Mn displacement (h_{Mn}) and energy change during the activation of oxygen. (c) The charge density difference of $O_2(@MnN_3)$, where the yellow and cyan regions denote the electron accumulation and depletion zones, respectively. The isosurface value is $0.0015 \text{ e bohr}^{-3}$. (d) The schematic diagram of the configuration change of oxygen activation on MnN_4 and corresponding spin-charge density. (e) The energy change during activation of oxygen. (f) The charge density difference of $O_2(@MnN_4)$, where the yellow and cyan regions denote the electron accumulation and depletion zones, respectively. The isosurface value is $0.0015 \text{ e bohr}^{-3}$. (g) The projected density of states (PDOS) of the metal in MnN_3 , CoN_3 , NiN_3 , MnN_4 , CoN_4 , and NiN_4 . The Fermi level is set to zero.

spin magnetic moment of Mn in the O₂@MnN₃ is larger than that in the O₂@MnN₄. Moreover, Mn undergoes a subtle displacement compared with O₂@MnN₃. This observation suggests that the composite intermediate (*i.e.*, (OMnO)N₃) is formed during the activation process of O₂ on MnN₃, whereas no composite intermediate is formed on MnN₄. Applying the aforementioned analytical approach, the formation of composite intermediates (*i.e.*, (OCoO)N₃ and (ONiO)N₃) is also observed during the activation process of O₂ on CoN₃ and NiN₃, and the detailed information is provided in the ESI (Fig. S9 and S10[†]).

To further prove the formation of $(OMO)N_3$, the charge analysis is depicted in Fig. 3c and f. The Bader charge transferred by the metal for O₂@MnN₃, O₂@CoN₃, O₂@NiN₃, O₂@MnN₄, O₂@CoN₄, and O₂@NiN₄ is 1.54, 1.18, 1.03, 1.41, 0.98 and 0.81, respectively. The number of electrons lost by the metal follows the order: Mn > Co > Ni, can be explained by the declining innate attribute of electronegativity: Mn < Co < Ni. The threefold-coordinated system possesses a greater number of metal transfer electrons than its fourfold-coordinated counterpart, which is related to the oxygen adsorption mode. A similar charge distribution of the two O atoms on (OMO)N₃ is formed through the side-on adsorption mode. For the O₂@MN₄, the end-on adsorption mode results in an uneven charge distribution of the two O atoms. Bader charge analysis further quantitatively confirms this finding, with 0.39 and 0.51 e⁻ transferring to O_2 on MnN₃, and 0.17 and 0.24 e⁻ transferring to O_2 on MnN₄ (Fig. 3c and f). Furthermore, the higher charge depletion between the two O atoms on O_2 @MnN₃ implies a greater degree of activation of the adsorbed oxygen on MnN₃ compared to MnN₄. The results also confirm the formation of intermediates (OMO)N₃ for Mn, Co, and Ni (*i.e.*, (OMnO)N₃, (OCoO)N₃, and (ONiO)N₃). Overall, the variation in oxygen adsorption modes alters the spatial charge distribution, leading to a discrepancy in the oxygen activation process under two distinct coordination modes.

To elucidate the spin-coupling mechanism during the oxygen adsorption–activation process, the d-orbital projected densities of states (PDOS) of metal atoms are systematically analyzed. As shown in Fig. 3g, there is an asymmetric arrangement of d electron states in the spin channels, signifying the spin polarization apart from NiN₄. After the formation of the M– N coordination structure, according to the crystal field theory, the five 3d orbitals in the metal atom with the same energy undergo a splitting into four groups: d_z^2 , $d_{xz/yz}$ (two-fold degenerate), d_{xy} , and $d_{x^2-y^2}$. For MN₄, all three metals have empty $d_{x^2-y^2}$ anti-bonding orbitals with energy above the Fermi energy level (*E*_F) and occupied d_{xy} bonding orbitals with energy

Fig. 4 The Gibbs free energy profiles of the most appropriate intermediate state for NaO_2 , Na_2O_2 , Na_3O_2 , and Na_4O_2 at diverse voltages on (a) MnN₃, (b) CoN₃, (c) NiN₃, (d) MnN₄, (e) CoN₄, (f) NiN₄, (g) (OMnO)N₃, (h) (OCoO)N₃, and (i) (ONiO)N₃ catalysts, respectively.

below $E_{\rm F}$. This means $d_{x^2-y^2}$ and d_{xy} are not active compared to the d_z^2 and $d_{xz/yz}$, which is consistent with previous research.³⁷⁻³⁹ We find that d_z^2 is the main active orbital according to the degree of orbital overlap (Fig. S11 and S12†). Unlike MN₄, the d_{xy} orbital electron states on MN₃ occur within the energy range of -2 to 0 eV, which implies that the d_{xy} orbital electrons of the metal in MN₃ are more active than those of MN₄. MN₃ with a higher spin magnetic moment exhibits an increased exposed charge density due to its prominent metal atoms, leading to an intensified coupling between the d_{xy} orbital electrons of metals and the π_{2p} anti-bonding electrons of oxygen. The differences in the spin-coupling mechanism can be accounted for by changes in the coordination environment, which result in different spin charge distributions of MN₃ and MN₄.

To shed light on the impact of the aforementioned spincoupling mechanism on catalytic performance, the Gibbs free energy profiles during the ORR and OER processes of Na–O₂ batteries on MN_x under various potentials are illustrated in Fig. 4. In addition to NaO₂ and Na₂O₂ as the main products, the deep reduction products (*i.e.*, Na₃O₂ and Na₄O₂) are also considered which can also be formed to improve the energy density of the battery.²¹ The stable structures of *NaO₂, *Na₂O₂, *Na₃O₂, and *Na₄O₂ are presented in Fig. S13–S16.† All reaction steps are exothermic under U_0 during the discharge process, decoding that the reactions are thermodynamically preferable and deep reductions are feasible. The η_{ORR} values for MnN₃, CoN₃, NiN₃, MnN₄, CoN₄, and NiN₄ are 1.80, 1.12, 0.93, 0.54, 0.86, and 0.24 V, respectively (Fig. 4a–f). The η_{OER} values for MnN₃, CoN₃, NiN₃, MnN₄, CoN₄, and NiN₄ are 4.77, 2.92, 2.61, 1.06, 0.38, and 0.25 V, respectively. Compared to the η_{OBR} , η_{OER} is higher particularly in the case of threefold-coordinated catalysts (e.g. for MnN₃, the value of η_{OER} is 4.77 V, greater than the value of η_{ORR} of 1.80 V). This can be interpreted by the challenging dissociation of the stable intermediate (OMO)N₃ in the OER process. However, if we set the composite intermediates as the catalytic center (*i.e.*, the center is stable and may not decompose in the OER catalysis process), the average overpotential of (OMO)N₃ is 0.64 V which is significantly lower than that of the pristine single atom center (*i.e.*, MN₃) (Fig. 4g-i). These results reflect that the formed (OMO)N₃ could lower the overpotential and exhibit high activity as the active center. The kinetic stability of the composite intermediates is illustrated through Ab initio molecular dynamics (AIMD) simulation; all three (OMO)N₃ structures are not dissociated, reflecting their excellent kinetic stability (Fig. S17–S19†).

In order to explore the correlation between the adsorption and activation of O_2 and battery performance, the difference between the spin and electronic properties of catalysts before and after O_2 adsorption is investigated, as well as correlations between the adsorption energy and corresponding overpotential. As depicted in Fig. 5a, the spin magnetic moment of the metal is positively correlated with the total overpotential of the battery for catalysts of the same coordination type. A low spin state is beneficial to the catalytic reaction. Therefore, the regulation of the spin state is an effective strategy to design highly active catalysts.

Fig. 5 (a) The relations between the magnetic moment (*M*) of metal and the total overpotential (η_{TOT}). (b) The schematic diagram of the shift of the occupied d-band center (ε_d) before and after O₂ adsorption. (c) The relations between the adsorption energy of O₂ ($E_{ads}(O_2)$) and the occupied d-band center (ε_d). (d) The linear relations between the integrated COHP (iCOHP) and the total overpotential (η_{TOT}). (e) The scaling relationship between the adsorption energy of Na_yO₂ ($E_{ads}(Na_yO_2)$) and the adsorption energy of O₂ ($E_{ads}(O_2)$) on MnN₃. CoN₃, NiN₃, MnN₄, CoN₄, and NiN₄. (f) The contour plot between the adsorption energy of O₂ ($E_{ads}(O_2)$), the adsorption energy of Na ($E_{ads}(Na)$) and the total overpotential (η_{TOT}).

After the adsorption of oxygen, the occupied d-band center of the metal shifted upward (Fig. 5b). According to the classical dband center theory, the higher the d-band center value, the stronger the adsorption strength of adsorbates due to the decrease of anti-bonding filling.^{40,41} Nevertheless, in our work, it is observed that for the more negative occupied d-band center value systems (such as O₂@MnN₃), their adsorption is stronger (Fig. 5c). This tendency seems to be contrary to the classical dband center theory, which can be attributed to the fact that the adsorption strength is influenced by both the filling of antibonding and the extent of energy level alignment.42,43 The extent of energy level alignment can be understood as the gap between the d-band of the metal and p-band center of the adsorbate (e.g., O₂). The smaller the gap value, the stronger the strength of interaction according to molecular orbital theory and relevant literature.44,45 The downshift of the d-band center results in an enhanced alignment of energy levels between the d-band and p-band, thereby decreasing the gap due to the lowlying p-band center (*i.e.* more negative values) in the adsorbate compared to the high-lying d-band center. Therefore, the adsorption strength of O2 increases. We also find that the O2 adsorption strength is correlated with the M-O bond, which can be quantitatively characterized utilizing the projected Crystal Orbital Hamilton Population (pCOHP) analysis. The more negative the value of the integrated COHP (iCOHP), the stronger the bond strength between metal and oxygen. As plotted in Fig. S20,[†] the strength of the two M–O bonds in the side-on adsorption mode of MN₃ is similar (e.g. for MnN₃, the iCOHP of the two Mn-O bonds is 0.43 and 0.55, respectively), unlike the end-on adsorption mode of MN4 where the M-O bond strengths are different (e.g. the -iCOHP of the two Mn-O bonds are 0.34 and 0.09, respectively). Moreover, it can be found that a strong bonding strength between metal and oxygen can lead to an increase in overpotential (Fig. 5d). The adsorption energy of NaO₂, Na₂O₂, Na₃O₂, and Na₄O₂ on the same catalyst is linked to the adsorption energy of O₂, as shown in Fig. 5e. The adsorption energy of sodium oxides $(E_{ads}(Na_{\nu}O_2))$ is linear to the $E_{ads}(O_2)$, with correlation coefficients above 0.91. Furthermore, it can be demonstrated from Fig. 5f that the catalytic performance is associated with both $E_{ads}(O_2)$ and Na. The correlation coefficient between $E_{ads}(O_2)$ and η_{TOT} is 0.98, indicating that the O2 adsorption energy can be a practical descriptor of overpotential of the Na–O₂ battery: $\eta_{\text{TOT}} = -0.92E_{\text{ads}}(O_2) + 0.02$. The noticeable negative correlation can be imputed to the fact that the stronger the oxygen-affinity nature of MN_x catalysts, the less favorable the oxygen desorption during the OER. The oxygenaffinity can be divided into three types. When the metal atom in the catalyst displaces outward from the graphene plane, forming a side-on adsorption mode with oxygen, we describe the catalyst as being oxyphilic. The value of adsorption energy is greater than $-3 \text{ eV}(i.e., MN_3)$. If the metal atom remains within the graphene plane and engages in end-on adsorption with O_{2} , it is categorized as oxyphobic with the adsorption energy smaller than -1 eV (*i.e.*, CoN₄ and NiN₄). Between oxyphilic and oxyphobic, there is an oxy-amphiphilic zone when the metal atom resides within the graphene plane and interacts with oxygen in an end-on adsorption mode. The value of adsorption

energy is between -3 and -2 eV (*i.e.*, MnN₄). In conclusion, oxyphilic catalysts play a decisive role in inducing the formation of oxygen-containing active centers, namely (OMO)N₃. Our findings indicate that regulating the oxygen-affinity of a catalyst is paramount in modifying the catalytic performance of reactions involving oxygen.

Adsorption and migration of Na ions on spin-state MN_x

In the battery reaction, Na atoms react with the adsorbed O₂ to form a series of sodium oxides (*i.e.*, NaO₂, Na₂O₂, Na₃O₂, and Na₄O₂), which involves the migration of Na atoms. Considering the size effect of Na, the migration degree determines the rate performance of Na-O₂ batteries. During the migration process, the appropriate energy barrier is vital in enabling a faster migration rate. The super-high energy barrier to Na migration suggests that the substrate has a strong trapping effect on Na, which further blocks the activity of the catalyst; meanwhile, the too low energy barrier to Na migration indicates that the substrate has a weak adsorption effect on Na, which cannot provide a large enough driving force to combine with oxygen and other discharge products for a deep reduction reaction, resulting in a lower catalytic efficiency.46 Hence, we further investigated the migration of Na on the catalyst substrate. Considering the symmetry of the substrate structure and the stable adsorption sites of MN_x, two different pathways are constructed, namely the proximal path and the distal path (Fig. 6 and S18 and S19[†]). The proximal path represents the migration of Na near the active structure, and the distal path represents the migration of Na from near the active structure to far away from the site.

For the proximal path of Na on MnN₃, it is intriguing that an energy well appears when the Na traverses the site above the Mn atom (Fig. 6a). It can be observed that the Mn shifts outward towards the graphene, which is attributed to the repulsive effect of the Mn atom on the Na atom. Meanwhile, Na is captured due to the Coulomb interaction force between the three N atoms and Na atom. The formed intermediate structure (*i.e.*, Na–N₃) is similar to a very stable substance, NaN₃. Therefore, the transition from the IS to the energy well involves the formation of two Na-N bonds and tends towards stability, resulting in an energy change exceeding 5 eV. The energy well can be explained by the strong capture effect generated by the unsaturated coordination mono-vacancy doped structures (*i.e.*, MnN₃). For the distal path, Na needs to overcome an energy barrier of 2.24 eV to get rid of the MnN₃ center (Fig. 6b). Compared with MnN₃, there is a barrier of 1.46 eV for the proximal migration of Na on MnN₄, indicating a weaker trapping capability of MnN₄ (Fig. 6c). As for the distal migration of Na on MnN₄, it is necessary to absorb 0.46 eV energy to break the balance between the Coulomb interaction force of MnN₄-Na and C-Na (Fig. 6d). Furthermore, the order of the energy barrier of Na distal migration on the MnN_x is the same as the trend of Na adsorption energy on the MnN_x (*i.e.*, $MnN_3 > MnN_4$), which also underscores the strong capture ability of the threefold-coordinated catalysts. Using the same method, we analyze the migration of Na on CoN_x and NiN_r. We observe that there exists a potential well when Na

Fig. 6 The relative energy profiles of (a) the proximal path and (b) the distal path of the Na atom migration on MnN_3 ; (c) the proximal path and (d) the distal path of the Na atom migration on MnN_4 .

migrates proximally on CoN_3 and NiN_3 , while there exists an energy barrier on CoN_4 and NiN_4 (Fig. S21 and S22[†]).

Conclusion

In this research, the catalytic mechanism of two coordination modalities' spin SACs has been thoroughly investigated for Na-O₂ battery applications. Compared with fourfold-coordinated catalysts with carbon double-vacancies (i.e., MN₄), threefoldcoordinated catalysts with a carbon mono-vacancy (*i.e.*, MN_3) exhibits high spin states. Such disparity in spin states leads to an oxygen side-on adsorption mode and end-on adsorption mode of O2. The side-on adsorption mode on MN3 can induce the formation of composite intermediates (*i.e.*, $(OMO)N_3$), which can serve as an active center to reduce the overpotential (e.g. for MnN₃, reduced from 4.77 to 0.65 V). The end-on adsorption mode on MN₄ cannot facilitate the transformation of the active center. We further find that the oxygen adsorption energy can be a descriptor of the overpotential of the Na-O₂ battery. The established scaling relationship has a correlation coefficient of 0.98. We elucidate the spin-coupling mechanism and the evolution mechanism of the active center of spin SACs in Na-O2 batteries at the atomic level. We hope our work will promote the rational design of superior oxygen adsorption-activation involving catalysts over conventional trial and error methods.

Data availability

The data supporting this article have been included as part of the ESI.†

Author contributions

J. L and A. M. contributed equally to this work.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFB4602101), the Fundamental Research Funds for the Central Universities (No. 2022ZFJH004), the National Natural Science Foundation of China (No. 22308096, 22278127, and 22378112), and Shanghai Pilot Program for Basic Research (22T01400100-18).

References

- Y. Wang, R. Wang, K. Tanaka, P. Ciais, J. Penuelas, Y. Balkanski, J. Sardans, D. Hauglustaine, W. Liu, X. Xing, J. Li, S. Xu, Y. Xiong, R. Yang, J. Cao, J. Chen, L. Wang, X. Tang and R. Zhang, Accelerating the Energy Transition Towards Photovoltaic and Wind in China, *Nature*, 2023, 619, 761–767.
- 2 X. Yang, C. P. Nielsen, S. Song and M. B. McElroy, Breaking the Hard-to-Abate Bottleneck in China's Path to Carbon Neutrality with Clean Hydrogen, *Nat. Energy*, 2022, 7, 955– 965.

- 3 Z. Zhang, Z. Zhang, P. Liu, Y. Xie, K. Cao and Z. Zhou, Identification of Cathode Stability in Li–CO₂batteries with Cu Nanoparticles Highly Dispersed on N-Doped Graphene, *J. Mater. Chem. A*, 2018, **6**, 3218–3223.
- 4 Y.-N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang, J. Wei and Z. Zhou, Bifunctional Electrocatalysts of Mof-Derived Co-N/C on Bamboo-Like Mno Nanowires for High-Performance Liquid- and Solid-State Zn-Air Batteries, *J. Mater. Chem. A*, 2018, **6**, 9716–9722.
- 5 E. Peled, D. Golodnitsky, H. Mazor, M. Goor and S. Avshalomov, Parameter Analysis of a Practical Lithiumand Sodium-Air Electric Vehicle Battery, *J. Power Sources*, 2011, **196**, 6835–6840.
- 6 P. Hartmann, C. L. Bender, M. Vračar, A. K. Dürr, A. Garsuch,
 J. Janek and P. Adelhelm, A Rechargeable Room-Temperature Sodium Superoxide (NaO₂) Battery, *Nat. Mater.*, 2012, 12, 228–232.
- 7 J. Wang, Y. Ni, J. Liu, Y. Lu, K. Zhang, Z. Niu and J. Chen, Room-Temperature Flexible Quasi-Solid-State Rechargeable Na–O₂ Batteries, *ACS Cent. Sci.*, 2020, **6**, 1955–1963.
- 8 C. Jiang, *et al.*, A Highly Stable All-Solid-State Na-O₂/H₂O Battery with Low Overpotential Based on Sodium Hydroxide, *Adv. Funct. Mater.*, 2022, **32**, 2202518.
- 9 B. Lee, E. Paek, D. Mitlin and S. W. Lee, Sodium Metal Anodes: Emerging Solutions to Dendrite Growth, *Chem. Rev.*, 2019, **119**, 5416–5460.
- 10 Y. Chen, J. Xu, P. He, Y. Qiao, S. Guo, H. Yang and H. Zhou, Metal-Air Batteries: Progress and Perspective, *Sci. Bull.*, 2022, 67, 2449–2486.
- 11 K. A. Novčić, A. S. Dobrota, M. Petković, B. Johansson, N. V. Skorodumova, S. V. Mentus and I. A. Pašti, Theoretical Analysis of Doped Graphene as Cathode Catalyst in Li-O₂ and Na-O₂ Batteries - the Impact of the Computational Scheme, *Electrochim. Acta*, 2020, 354, 136735.
- 12 B. Chen, T. Wang, S. Zhao, J. Tan, N. Zhao, S. P. Jiang, Q. Zhang, G. Zhou and H. M. Cheng, Efficient Reversible Conversion between MoS₂ and Mo/Na₂S Enabled by Graphene-Supported Single Atom Catalysts, *Adv. Mater.*, 2021, 33, 2007090.
- 13 S. M. B. Khajehbashi, L. Xu, G. Zhang, S. Tan, Y. Zhao, L.-S. Wang, J. Li, W. Luo, D.-L. Peng and L. Mai, High-Performance Na-O₂ Batteries Enabled by Oriented NaO₂ Nanowires as Discharge Products, *Nano Lett.*, 2018, 18, 3934-3942.
- 14 J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl and A. Kahn, Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications, *Adv. Mater.*, 2012, 24, 5408–5427.
- 15 Y. Li, X. Liu, L. Zheng, J. Shang, X. Wan, R. Hu, X. Guo, S. Hong and J. Shui, Preparation of Fe–N–C Catalysts with FeNx (X = 1, 3, 4) Active Sites and Comparison of Their Activities for the Oxygen Reduction Reaction and Performances in Proton Exchange Membrane Fuel Cells, *J. Mater. Chem. A*, 2019, 7, 26147–26153.
- 16 G. S. Lee, J. G. Kim, J. T. Kim, C. W. Lee, S. Cha, G. B. Choi, J. Lim, S. Padmajan Sasikala and S. O. Kim, 2D Materials

Beyond Post-Ai Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts, *Adv. Mater.*, 2024, **36**, 2307689.

- 17 G. Kresse and J. Hafner, Ab Initiomolecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium, *Phys. Rev. B*, 1994, **49**, 14251–14269.
- 18 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 19 P. E. Blöchl, Projector Augmented-Wave Method, *Phys. Rev. B*, 1994, **50**, 17953–17979.
- 20 S. Grimme, Semiempirical Gga-Type Density Functional Constructed with a Long-Range Dispersion Correction, *J. Comput. Chem.*, 2006, **27**, 1787–1799.
- 21 J.-H. Li and Y.-X. Yu, Enhanced Catalytic Performance of Pillared δ -MnO₂ with Enlarged Layer Spaces for Lithiumand Sodium-Oxygen Batteries: A Theoretical Investigation, *Nanoscale*, 2021, **13**, 20637–20648.
- 22 Y. Han, *et al.*, Experimental and DFT Studies of Oxygen Reduction Reaction Promoted by Binary Site Fe/Co-N-C Catalyst in Acid, *J. Electroanal. Chem.*, 2022, **914**, 116322.
- 23 A. M. Ferrari, C. Pisani, F. Cinquini, L. Giordano and G. Pacchioni, Cationic and Anionic Vacancies on the NiO(100) Surface: DFT+U and Hybrid Functional Density Functional Theory Calculations, *J. Chem. Phys.*, 2007, **127**, 174711.
- 24 Z. Zuo, S. Liu, Z. Wang, C. Liu, W. Huang, J. Huang and P. Liu, Dry Reforming of Methane on Single-Site Ni/MgO Catalysts: Importance of Site Confinement, *ACS Catal.*, 2018, **8**, 9821–9835.
- 25 G. Henkelman and H. Jónsson, Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points, *J. Chem. Phys.*, 2000, **113**, 9978–9985.
- 26 G. Henkelman, B. P. Uberuaga and H. Jónsson, A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths, *J. Chem. Phys.*, 2000, 113, 9901–9904.
- 27 Y. Wang, A. Cho, G. Jia, X. Cui, J. Shin, I. Nam, K. J. Noh, B. J. Park, R. Huang and J. W. Han, Tuning Local Coordination Environments of Manganese Single-Atom Nanozymes with Multi-Enzyme Properties for Selective Colorimetric Biosensing, *Angew. Chem., Int. Ed.*, 2023, 62, e202300119.
- 28 X. Liang, D. Wang, Z. Zhao, T. Li, Y. Gao and C. Hu, Coordination Number Dependent Catalytic Activity of Single-Atom Cobalt Catalysts for Fenton-Like Reaction, *Adv. Funct. Mater.*, 2022, **32**, 2203001.
- 29 J. Li, *et al.*, Atomically Dispersed Manganese Catalysts for Oxygen Reduction in Proton-Exchange Membrane Fuel Cells, *Nat. Catal.*, 2018, **1**, 935–945.
- 30 S. Zhang, *et al.*, Constructing Precise Coordination of Nickel Active Sites on Hierarchical Porous Carbon Framework for Superior Oxygen Reduction, *Small*, 2021, **17**, 2102125.
- 31 C. Yan, *et al.*, Coordinatively Unsaturated Nickel-Nitrogen Sites Towards Selective and High-Rate CO₂ electroreduction, *Energy Environ. Sci.*, 2018, **11**, 1204–1210.
- 32 Y. He, *et al.*, Dynamically Unveiling Metal–Nitrogen Coordination During Thermal Activation to Design

High-Efficient Atomically Dispersed Con4 Active Sites, Angew. Chem., Int. Ed., 2021, 60, 9516–9526.

- 33 S. Kattel and G. Wang, A Density Functional Theory Study of Oxygen Reduction Reaction on Me-N₄ (Me = Fe, Co, or Ni) Clusters between Graphitic Pores, *J. Mater. Chem. A*, 2013, 1, 7107–7113.
- 34 L. Kavalsky, S. Mukherjee and C. V. Singh, Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li–Air Batteries, *ACS Appl. Mater. Interfaces*, 2018, **11**, 499–510.
- 35 K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni, H. Li, Z. Lin and M. Liu, Insights into the Activity of Single-Atom Fe-N-C Catalysts for Oxygen Reduction Reaction, *Nat. Commun.*, 2022, 13, 2075.
- 36 S. Yu, Z. Levell, Z. Jiang, X. Zhao and Y. Liu, What Is the Rate-Limiting Step of Oxygen Reduction Reaction on Fe–N–C Catalysts?, *J. Am. Chem. Soc.*, 2023, **145**, 25352–25356.
- 37 M. Xiao, *et al.*, 3d-Orbital Occupancy Regulated Ir-Co Atomic Pair toward Superior Bifunctional Oxygen Electrocatalysis, *ACS Catal.*, 2021, **11**, 8837–8846.
- 38 Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou and H. M. Cheng, Engineering d-p Orbital Hybridization in Single-Atom Metal-Embedded Three-Dimensional Electrodes for Li-S Batteries, *Adv. Mater.*, 2021, 33, 2105947.
- 39 Y. Ni, et al., Regulating Electrocatalytic Oxygen Reduction Activity of a Metal Coordination Polymer Via d-π Conjugation, Angew. Chem., Int. Ed., 2021, 60, 16937–16941.

- 40 J. K. Nørskov, F. Abild-Pedersen, F. Studt and T. Bligaard, Density Functional Theory in Surface Chemistry and Catalysis, *Proc. Natl. Acad. Sci. U.S.A.*, 2011, **108**, 937–943.
- 41 M. Liu, T. Sun, T. Peng, J. Wu, J. Li, S. Chen, L. Zhang, S. Li, J. Zhang and S. Sun, Fe-NC Single-Atom Catalyst with Hierarchical Porous Structure and P–O Bond Coordination for Oxygen Reduction, *ACS Energy Lett.*, 2023, 8(11), 4531– 4539.
- 42 Y. Men, *et al.*, Oxygen-Inserted Top-Surface Layers of Ni for Boosting Alkaline Hydrogen Oxidation Electrocatalysis, *J. Am. Chem. Soc.*, 2022, **144**, 12661–12672.
- 43 M.-W. Gu, H. H. Peng, I. W. P. Chen and C.-h. Chen, Tuning Surface d Bands with Bimetallic Electrodes to Facilitate Electron Transport across Molecular Junctions, *Nat. Mater.*, 2021, **20**, 658–664.
- 44 J. Yu, X. Yong and S. Lu, p-d Orbital Hybridization Engineered Single-Atom Catalyst for Electrocatalytic Ammonia Synthesis, *Energy Environ. Mater.*, 2023, 7, e12587.
- 45 X. Li, Y. Xiao, Q. Zeng, L. Xu, S. Guo, C. Zheng, Q. Zhang and S. Huang, Manipulating orbital hybridization of single-atom catalytic sites in metal-organic framework for highperformance lithium-sulfur batteries, *Nano Energy*, 2023, **116**, 108813.
- 46 Q. Zheng, *et al.*, Unveiling Atom Migration Abilities Affected Anode Performance of Sodium-Ion Batteries, *Angew. Chem., Int. Ed.*, 2023, **62**, e2023033.