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HIGHLIGHTS

o For any battery-powered device, correct SOC estimation Is critical.

e A battery state-space model was developed for state of charge (SOC) estimation.

¢ Model parameter identification using bias-compensated FFRLS approach.

o Optimization of traditional UKF to improve the stabllity of the algorithm.

o The algorithm was validated using battery data from various discharge conditions.
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Accurately predicting the state of charge (SOC) is crucial to improving Li-ion battery performance. However,
available model-based estimation approaches still face challenges in handling model uncertainty and measure-
ment noise effects on parameter identification. Besides, the widely used unscented Kalman filter (UKF) algorithm
has limitations in electric vehicles as it requires the error covariance matrix to maintain positive definiteness,
limiting its applicabllity under certnin conditions. This study introduces the bias-compensated forgetting factor
recursive lenst squares (BCFFRLS) method for parameter estimation within the second-order RC equivalent
circuit model specific to the INR18650-20R battery, Furthermore, we propose a novel algorithm named the
optimization multi-interest adaptive unscented Kalman filter (O-MIAUKF). This algorithm is designed to address
stabllity and robustness issues with traditional UKF encounters in dynamic environments. Experimental vali-
dation demonstrates that the O-MIAUKF algorithm excels in maintaining strong stabllity and robustness in
various working conditions, accurately estimating SOC even with a non-positive covariance matrix. The SOC
estimation error remains stable at 0.8 %, which is lower than that of the current Extended Kalman Filter (EKR),
UKEF, and Dual Extended Kalman Filter (DEKF).

1. Introduction driving, inaccurate SOC estimates can lead to the driver being unable to

predict range. Additionally, this can result in both overcharging and

Li-ion batteries serve as the main power storage units in electric
vehicles (EVs) as a result of their substantial energy density and
extended service life [1]. Por the safe and valid functioning of Li-ion
batteries in EVs, it is imperative to have a robust and reliable Battery
Management System (BMS) [2,3]. A fundamental function of the BMS is
the accurate estimation of the state of charge (SOC) [4]. During EV

over-discharging of the battery, thereby elevating the risk of permanent
damage to its internal composition (5,6].

At present, three principal approaches have been suggested for SOC
estimation: the experimental method [7-9], the data-driven technique
[10-12], and the model-based approach [13,14]. Among these, the
model-based approaches strike a more effective balance with regard to
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Fig. 1. The second-order RC model.

accuracy, complexity, real-time performance, and compurational ex-
penses, making it a promising option for EV applications [15].
Model-based approaches usually consist of two stages: modeling of the
battery and implementation of algorithms. In the stage of battery
modeling [16], developing a mathematical model is crucial to accu-
rately represent the battery's behavior. Typically, this model is divided
into four main types: the empirical model [17], the electrochemical
model (18], the equivalent circuit model (ECM) [19], and the electro-
chemical impedance model [20]. In contrast, ECM stands out as the most
apt for SOC estimation, owing to its wide-ranging applicability and
relatively low computational requirements [21]. Once the model is
established, identifying the model parameters becomes crucial to
determine SOC values [22]. An offline parameter identification method
is uscd in conjunction with Hybrid Pulse Power Characterization (HPPC)
experiments to determine these parameters. Nevertheless, this approach
fails to precisely represent the battery's dynamic response in the pres-
ence of intricate operating conditions [23]. This issue can be resolved
through the application of online parameter identification techniques.
The recursive least squares (RLS) method [24] is a common choice, but it
can suffer from dara saturation issues that lead to inaccuracies in
parameter identification. To solve thesc problems, Zhang ct al, [25]
have introduced the RLS method incorporating a forgetting factor.
Additionally, Chen et al. [26] have proposed the bias-compensated
recursive least squares method to enhance parameter identification ef-
ficacy by addressing the impact of model noise on estimation outcomes.
In the phase of algorithm implementation, algorithms from the Kalman
Filter (KF) family [27] are extensively used for SOC estimation, owing to
their capability to effectively combine model predictions and actual
measurements to deal with noise and uncertainty. However, given the
highly nonlinear nature of battery models [28], the current SOC esti-
mation mainly employs the following four algorithms; Extended Kalman
Fllter (EKF) [29), Unscented Kalman Filter (UKF) [30], Cubarure Kal-
man Filter (CKF) [31], and Particle Filter (PF) [32]. Each of these al-
gorithms can deal with nonlinear mathematical models. Moreover, the
constant covariance of measurement and process noise within the sys-
tem can diminish the estimation's overall performance [33]. An adap-
tve link [34,35] has been introduced to the KF family algorithm to
elevate the precision of SOC estimation, which enables the online
correction of measurement and process noise covariance.

Many researchers have found that there are still many limitations in
the online methods for estimating SOC. For instance, the model may not
fully capturc the battery behavior in parameter identification, and the
processing capabilities may be insufficient for data under extreme con-
ditions (36,37). In addition, 1o ensure that the UKF works appropriately,
the error covariance matrix remains positively definite [38]. Neverthe-
less, as the algorithm progresses, in successive updates, the error
covariance matrix risks evolving into a matrix that is not positive defi-
nite, which can lead to an abnormal stopping of the algorithm.
Currently, Wang et al. [39-41] use the UKF algorithm, this approach not
only initalizes the error covariance matrix as a positively definite di-
agonal matrix but also does not compute the sigma points for the priori
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probabllity distribution of the state varlable at the kth moment. This
avolds the process of updating the system's error covarlance matrix,
enhancing algorithm stabllity, but its accuracy is also substantially
reduced. Consequently, achieving stable and accurate SOC estimation
remains challenging and highly focused In the field [42]. Therefore, it is
necessary to find ways to overcome the above limltations, thereby
enhancing the algorithm's accuracy and stabllity.

In our research, a combined approach of online parameter |dentifi-
cation and state estimation is [ntroduced ag a solutlon to these two is-
sues. We use the blas-compensated forgetting factor recursive least
squares (BCFFRLS) approach for real-time identification of model pa-
rameters to mitigate the impact of data saturation and uncertalnty noise.
To enhance the stability of the traditional UKF, three distinct matrix
decomposition methods, Singular Value Decomposidon, Rigenvalue
Decomposition, and QR Decomposition, replace the Cholesky Decom-
position in the orlginal algorithm. SOC estimation is additionally per-
formed under HPPC conditions, where we compare the stabllity and
operational speed of the optimized UKF algorithms using these three
methods. Then, we selected the more rapid Singular Value Decomposi-
tion method, building upon this, the mult-interest theory and the
adaptive link were introduced to refine SOC estimation accuracy. The
efficacy of the SVD-MIAUKF algorithm was then validated under dy-
namic testing conditions, with its estimation outcomes being analyzed
and contrasted against those from various algorithms like EKF, UKF, and
DEKF. Furthermore, the robustness of the presented joint estimation
approach was evaluated with the use of inaccurate initial values.

2. Battery model and parameters identification
2.1. Second-order RC model

The common ECMs are the Rint model [43], the PNGV model [44],
the n-order RC model [45], and GNL model [46]. This study employs the
second-order RC model to simulate the dynamically varying battery
properties, as illustrated in Fig. 1.

This model depicts the battery's internal resistance characteristics
using ohmic internal resistance, and the two RC loops are utilized to
represent the concentration differential polarization and the electro-
chemical polarization within the battery, each loop corresponding to
one of these aspects respectively. Compared to other ECMs, the second-
order RC model boasts superior simulation precision and simpler
parameter identification. The functional equations of the circuit can be
obtained by applying the law of Kirchhoff:

Uy = Uoc = I(Ro = Uy = U

d _10) _ U
dr - C| R]C)_ (1)
dy 1) Us
d ™ G RG

Where C) and C; are the polarization capacitance, Ry and R are used to
denote the battery's polarization resistance, Ugc represents the open-
circuit voltage, U) and U are the voltages across two respective RC
loops, U; signifies the terminal voltage, I(t) denotes the battery's
charging or discharging current during its operation, and Rp is the
inherent ohmic resistance. Upc can be determined by the SOC [47,48],
U and I(t) can be measured by a sensor.

Following discretization within the time domain, the state space
formula ar the discrete time step k is given by:

Uia = Uoc(SOCy) = Lx- Ry — Uy p = Uny

‘ T’ s T‘
Uip = Uipan L,\p( T‘) + LR (1 _e'\P(-r_,)) @
T, 1
Uay = Vg C,\'p(—;) + 1,,g_1R1(1 —cXp (—3))



S. Wang ot al

Jotirmal of Power Sources 606 (4024) 234547

Actual of battery voltage
and current

=

old data new data

Identification resulfs

\_ Data saturation

( FFRLS

r Second-order RC model

_ R Ry

r

/BCFFRLS

1(t)
C - C. —
Lol
-l—_Uoc U U, U,

r-————¢-———-—-ﬁ-——————-—--—-—————
E
(o2

Fig. 2. Disgram of the BCFFRLS method.

Where T represents the interval of sampling time, r; and r are the
respective time constants, defined as 7; = R;Cy,72 = R2Ca.

2.2. Improved method for online parameter identification

Accurate and real-time identification and adjustment of model pa-
rameters are vital for improving SOC estimation accuracy. Our research
focuses on the widely adopted second-order RC equivalent model, uti-
lizing the BCFFRLS approach for parameter identification. The under-
lying concept is illustrated in Fig. 2.

Fig. 2 provides a comprehensive view of the BCFFRLS method, out-
lining its overall procedure. Moving forward, we delve into the detailed
workings of the BCFFRLS method. Starting from Eq. (1), the state
equation Is formulated in the frequency domain by utilizing the Laplace
transform, as shown in Eq. (3):

R, R,
U / —_—
oc(s) = Uifs) =1(s) (R°+R Cot1 RiCe+ 1) @
Where Is known that 7; = R;C) and 72 = R2C2. By setting U(s) = Ugc(s)-

Ui(s), we can deduce the battery’s transfer function and present it in Eq.
(4):

(-5') Ro + Ry + Ry + (Ryz) + Roa + Rat) + R\%2)s + Ry1 1128

Ole)= 1)~ L+ (1) + 12)s + imas®

4
Let:
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To maintain consistency in the system before and after discretization,
it is necessary to employ a bilinear transformation during the dis-

cretization process, let s = 2= 2. The discretized transfer function can

be derived:

(dT? — 2Te + 4ab)Z2 + (2dT% — 8ab)Z™ +dI* + 2Te + 4ab

-1\ —
@)= (T2 = 2Tc + 4b)Z-2 + (212 — 8b)Z + (T2 + 2Tc + 4b)
@
To simplify the calculation, let:
-8
k=~ aTe +ab
_ T*-2Tc+4b
ke =~ 3Te + 4b
d1? + 2Te + 4ab
e I S B 8
Vo= ®
e
K= T2 +2Tc+4b
e dT% — 2Te + 4ab
ST T 2Tc+-4b
Is derived as:
Uz 2 4 k2o
G(z™) = ( ) ksZ2+ kyZ7 + ky ©

1 — k22— klZ"

1z

Where the constants from k; to ks serve as the corresponding coefficient
values, transforming Eq. (9) into a differential cquation for the system:

Uk) =k Uk = 1) + kaU(k = 2) + kol (k) + kol (k = 1) + ksI(k—=2)  (10)

Where I(k) represents the input of the system, and U(k) denotes the
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output of the system, let:
{mw)=unk—lxv&—zynmJ@—lxxk—nV an
8= [khkhkhkhksl
Define the sensor sampling error at the k instant as e(k), this
occasion:
U(k) = ¢" (k)8 + e(k) (12)
Expanding ¢(k) to N dimensions, where k takes values of 3, 4, ... up
to N+2, the following equation can be obtained:
U=[U(K) U(k—1) U(k—2)--U(k—N)]"
e=[e(k) elk—1) e(k—2)--e(k—N)]"
Ulk—1) U(k—2) I(k) I(k—1) I(k—=2)

U(k=2) Ulk—3) I(k—1) I(k=2) I(k—3)
oK)=

U(k—=N—1) U(k—N=2) I(k=N) I(k-N=1) I(k—=N-2)
a13)
Taking the generalized function J(6):

N N
1))=Y (U-wo) =3 (e(i+2))* (14)

il I~

Given that the objective of the least squares method is to minimize J
(6), to locate the extremum of J(6), we set:

) 355 (U = 0070 = 90)] =0 s)
Can be obtained:
B=lo) o'y a0

A recursive operation on the process above is the RLS approach, as
shown in Eq. (17):

K(k+1) = PR)g(k+1) x (1 +¢T(k+ PRk +1))
e(k+1) = U(k+1) - ¢ (k + 1)8(K) an
Bk +1) = 8(k) + K(k + )e(k + 1)
Plk+1) = Pk) = K(k + 1)¢" (k + 1)P(K)

where 8(k) is the previously estimated reference value of the system,
¢ (k+1)8(k) represents the observation present magnitude, U(k+1)
signifies the system's actual observed value, and e(k +1) denotes the
prediction error. Multiplying the prediction error by the K(k+1) gain
term serves as a correction to the current prediction, resulting in the
optimal estimate 8(k +1) at this point in time. The eligible (0) and P(0)
must be provided to obtain the gain term K(k + 1), which in turn ini-
tiates the least squares method, typically, 8(0) can assume any value,
Py = aE, with a being as large as feasible, and E functioning as a unit
array.

The RLS algorithm features an infinite memory length, for the bat-
tery system, the accumulation of older data during recursive computa-
tions can hinder the ability of the algorithm to represent the
characteristics of new data, To prevent the aforementioned situation,
the introduction of the forgetting factor A, thus:

1 A
m=,,(—k)+¢(k+l)¢r(k+l) (18)

Hence, even when (k+1) is substandally large, P(k+1) does not
approach zero, effectively addressing the issue of data saturation. When
A =1, the method is a standard least squares approach [49].

Yet, In the practical operation of EVs, acquiring current and voltage
data from Li-lon batteries frequently encounters unpredictable noise,
which can result in inaccuracies in the Identification outcomes, There-

Journal of Power Sources 606 (2024) 234547

fore, we use the biag compensation approach to better fit the actual data,
particularly in the case of model uncertainty or measurement error. The
sequential steps of the finalized algorithm are outlined as follows:

{
K(k+1) = P()plk + 1) x (A + o7 (k + )Pk + 1))~
ek -+ 1) = Ulk+1) — ¢ (k + 1)8(k)
Bk + 1) = B(k) + K(k+ De(k+ 1)
P(k+1) ="' [P(k) — PU)K (k + 1)o" (k + 1)]
S I(k+1) =JK) + [tk + D x (2 + ¢ (k+ DPR)o(k+1)™ (19
P (k+1) = I+ 1) x (1 + Be(0DBE]) ™

I, 0
D=
[o"o.]

Boc(k +1) = Ok + 1) + ko*(k + 1)P(k + 1)D8yc (k)

where J(k+1) is the standard value for the system's error, 52(k+1) Is
the current noise variance of the system, D is the matrix of correlation

coefficients, I is the second-order identity matrix, Egc(k +1) Is the cur-
rent estimate of the parameter's value after the compensation for de-
viation, and in general, 85c(0) and §(0) can be an arbitrary value.

Following the determination of @p¢ value using the algorithm above,
the values from a to e can be deduced in accordance with Eq. (8):

_hthk—k
T4k =k
7q(l+k|—k2)
4(1 =k — kp)
_T(l+k)
““T-kh-k
_k1+k4+k5
Cl-k—k
C=T(kz—ks)
L l—kl—kq_

The recursive algorithm can derive the coefficients on the right-hand
side of this equation, while the left side representing the model's un-
known parameter, thus completing the parameter identification deri-
vation process. According to Eq. (5) and Eq. (20), the values of the five
parameters can be ascertained.

b=

(20)

d

Ro=a
Rl=r|(d—a)+ac-e
TTh—"n
Rz—“‘—d—a"'Rl
Tl
< C=— (21)
1 R
=5
C;—R]
ct Ve —4b
mn= 2

8. SOC estimation algorithm
3.1, SOC definition

In the case of Li-ion batteries, the SOC is defined as the proportion of
the residual capacity relative to the battery's total actual capacity, and
the SOC at any glven time ¢ is obtained from the coulomb counting
approach:

$OC(r) =SO0C(1o) —

i rg f’ f)dr 22)
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Where 5 represents the Coulombic efficiency, typicslly indicating the
proportion of electrons that are available versus those consumed during
the charge and discharge processes, and is assumed to be 0.9 during
charging and 1 during discharging [50], and in this study, we assume
to be 1, Cy denotes the actual uscable capacity of the battery, Dis-
cretization of Eq. (22) yields a discrete formulation of the SOC function:

Ty

S0C, =80C,-, — Cx

(23)

3.2. UKF dlgorithm

Typically, the nonlinear discrete state space equations for a Li-ion
battery circuit model are as follows:

»= Uoc(SOCL) + Cx + Duy + v, (24)

{ Xy = Axpo) + Buyoy + Wiy
Where x and u are the state variables and inputs of the system, respec-
tively. A and B represent the dynamic properties of the state equations, y
is system output, C and D primarily depict the dynamic properties of the
observation equations, w and v represent the system's process noise and
measurement noise, respectively. In practical applications, these repre-
sent independent Gaussian white noises, each having a mean of zero,
and k is the moment of iteration.
The procedural steps for implementing the UKF are as outlined:

1) Ascertain the initial value:

{ % = Elx)

— . (25)
Pl= E[(xo —x5) (30— x3) ]
2) Compute the sigma points for the state variable xx—; at time k-1:

) -
Xpoy =X

Koy = ;f: +/(L+APL,i=1,2.L (26)
Aoy =~ JLADPL =L L4220

Where L is typically set to 3, representing the state vector's dimension,
the weights are computed as follows:

A= (L+k)-L
A I
-l W om o fm]2..2L
LI il Ty (27)

= 4 2 0 ] =
W=t -a +ﬂ,Wr—2(L+A),I—1,2....2L

Where k is the secondary scaling factor, commonly set to 0 in the un-
scented transform, « is the scaling factor that denotes the proximity of

the sampled point to the mean, typically chosen as 0.01, g is generally
selected as 2 under Gaussian distribution conditions [51].

3) Update X; and Py:
2L
5= Wn
=0

o (28)
- Tl - -\T
7 =3 (W =) (- 5)) +2

4) Compute the sigma points for the state variable x at time k;
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g=5
B=F +/L+DPLI =120 (29)
M= - JL+)P =L+ 1,L+2,.2L

5) Update the observed value ¥; and the observed variance predictions
Pyy and Py

2L
Y=Y, Wi
=0

L
P,,=Z(Wi()d.—y[)(){—y;)r)+m (30)

=0

Py =3 Wk - 35) 0= 55)”

=0

6) Calculate Kj:

Ke=12 31)
b4

—

7) Update x} and P}:

=% +K0n-5) (32)
P = e = Kol

3.3. Optimization of UKF utillzing various matrix decomposition methods

In the traditional UKF, Cholesky Decomposition is used to find the
matrix square root for acquiring the sigma points essential to the algo-
rithm. However, Cholesky Decomposition necessitates the matrix being
a positively definite symmetric matrix, which affects the stability of UKF
in practical applications. In view of this, we decompose the error
covariance matrix using three methods: QR Decomposition, Eigenvalue
Decomposition and Singular Value Decomposition, since these three
types of decomposition can be used to both find the square root of the
matrix and to break down the non-positive definite matrix. Subse-
quently, the matrix square root, positive definite matrix, QR Decom-
position, Eigenvalue Decomposition and Singular Value Decomposition
are described.

Matrix square root: During the computation of sigma points,
directly squaring the matrix is not feasible because a matrix might have
multiple square roots and only square matrices possess square roots. [n
contrast, to compute the diagonal matrix square root, it Is only necessary
to replace each element on the diagonal with its square root. Thus, three
matrix decomposition methods can be used to calculate the matrix
square root.

Positive definite matrix: In general, the matrix P is considered to be
a positive definite matrix if it is an n-dimensional matrix and satisfies the
condition that xPx" >0 for all nonzero vector x. Furthermore, if all the
eigenvalues of an nth order matrix are greater than 0, then the matrix
also fulfills the condition of being positive definite matrix. Therefore,
based on the comparison of the eigenvalues with 0, covariance matrices
can be categorized as positlve definite, negative definite, semi-positive
definite, indefinite, and semi-negative definite.

QR Decomposition: The QR Decomposition is the decomposition of
a matrix into the product of two matrices, which can be applied to
general square matrices without requiring the matrix to be positve
definite. The decomposition principle can be expressed by Eq. (33).

P=0R (33)
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Fig. 3. Flowchart of the BCFFRLS-O-MIAUKF method.
Table 1
The OCV-SOC correspondence relationship.
0oCV(V) 4.166 4.05 3.94 3.839 3,753 3.664 3.625 3.599 3.555 3.467 3,385
soc 1 0.9 0.8 07 0.6 0.5 0.4 0.3 0.2 0.1 0
Where P is the matrix to be broken down, Q is an orthogonal matrix, R Is VP=UVEVT (38)

an upper triangular matrix, and RQ is a diagonal matrix by trans-
formation. At this point, VP can be expressed using the equation below:

vP=V/RQ

Eigenvalue Decomposition: The process of Eigenvalue Decompo-
sition entails breaking down a matrix into a product of its eigenvector
and eigenvalue matrices. Note that only diagonalizable matrices can be
subjected to elgenvalue decomposition. The decomposition principle
can be expressed by Eq. (35).

P=0AQ"

(34)

(35)

Where Q is a standard orthogonal matrix, there is QQ" = 1, A is the
diagonal matrix. At this point, y/P can be expressed using the equation
below:

VP=0vVAQ" (36)

Singular Value Decomposition: The Singular Value Decomposi-
tion, on the other hand, is a generalization of the Eigenvalue Decom-
position to arbitrary matrices, and is an important matrix decomposition
method In linear algebra, its decomposition principle can be expressed

by Eq. (37).

p=UzV" (37)

Where U is the left singular matrix and V is the right singular matrix, Z {s
the diagonal matrix. At this point, VP can be expressed using the
equation below:

In practical implementations of the UKF, the error covariance matrix
is typically set as a symmetric matrix that is positive definite. Therefore,
all three of the aforementioned decomposition methods can be used to
replace Cholesky Decomposition, the following is an example of the
result of Singular Value Decomposition, bringing Eq. (38) into Eq. (26),
obtaining a new formula for calculating the sigma sampling point, here's
an example of calculating the sigma sampling points at time k-1:

0 _ ot
B-1 = By
Ay =5, +VETAUVEi=12.L
A =X =LA NOVEV [ =L+1,L+2,..2L

(39)

3.4. MIAUKF algorithm

Section 3.2 describes the implementation process of the UKF. Based
on this, the MIAUKF includes two additional steps: defining the multi-
interest matrix, adjusting the covariance matrix for process noise (Qx)
and the matrix for measurement noise (Ry):

1) Defining the multi-Interest matrix Ej and Kp:

Epp = [en 1o, €11
Kux = [Kiy Kioy, o K] (40)
Q=YY
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where p Is the new interest length.

2) Adaptive adjustment of Qx and Ry:
O = KuFik]

Iy

|
F=— _Z:
Ml =M+

Ry =F + C‘/’AqCI

[ CI

(41)

where M is the size of the opening window.

—

3) Update x; and P;:

The aforementioned formula 1llustrates that the algorithm adjusts
the system nolse covarlance using the novel interest sequence from both
measured and estimated voltages, In updating the state variable

xf =0 4 KpaEpa

(42)
P =PL - KPyK]

I(A)

(d) g.0s5

RMSD
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Fig. 4. (o) Voltoge Profilc from the HPPC trial. (b) Current Profile from the HPPC trial. (c) Fitted OCV-SOC curve. (d) RMSD of curves fitted at varying orders.

estimates, it incorporates past novel interest vectors to construct multi-
novel interest matrix, enhancing the precision of the system state vari-
able estimates. However, this continual adjustment of the system noise
covariance matrix also elevates the likelihood of the covariance matrix
turning into a non-positive definite. Consequently, introducing a new
matrix decomposition method is essential to preserve the algorithm's
stability.

3.5. Barttery model equation

For SOC estimation of batteries with KF series of algorithms, it's
crucial to determine the observation equations and state equations of the
battery system, aligning with the mathematical relationships of the
second-order RC model.

By regarding the state varlables of the system as the SOC, U; and Uz,
and choosing the U, as the observation varlable, the state and observa-
tlon equatlons of the system can be formulated by integrating Bq. (2) and
Eq. (23).
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T,
0 0 -
S0G, T, SOCy- "
cm(—— 0 T,
U | = yl Ut |+ | Ri{1—exp . g
Un 0 0 _Zi Ung-i
Cxp T R! (l - exp (_L)) (43)
T2
SOC,
U= Uoc(SOCL) + (0 -1 -1 ) UIJ — g\ Ry
\ Uny
From Eq. (24): 4.2. HPPC experiment
x = [SOC, Uy Uu]r The OCV of Li-ion batteries reflects Its terminal voltage at no load
— when the internal electrochemical reaction has reached equilibrium.
Typically, after an adequate period of rest, the OCV is expected to be
1 0 0 numerically similar to the battery’s terminal voltage. Given that direct
T measurement of the terminal voltage is impractical, the OCV is used as a
A 0 cxp (_r:) 0 proxy to determine the terminal voltage at a given SOC.
T,
0 0 e
°"P( r,) 012 ——FFRLS
——BCFFRLS
T, ) —
C, Q.‘P 0.06
B= R,(]—cxp( 1:')) 0.03_ . .
K 0 2000 4000 6000 8000 10000 12000
0.04p
Rz(l —cxp(—ﬂ)) —FFRLS
2} 0.03 ——BCFFRLS
—~
c=0 -1 -1) g 0.02
L D = [-Ro] A 001
After obtaining the parameters and state space equations, the SOC 0'000 2000 4000 6000 8000 10000 12000
estimation for the battery can be achieved using the above algorithmic 0.03 ———FFRLS
steps. Fig. 3 illustrates the general framework of the BCFFRLS-O- ——BCFFRLS
MIAUKF algorithm. This study utilizes a second-order RC model to a 0.02
examine the discharge behavior of Li-ion batteries, and BCFFRLS is fused <
with the optimized UKF to accomplish real-time identification of model d" 0.01 JJJ
parameters and precise online SOC estimation. The joint algorithm ad- T - - - b
dresses the stability issue that plagues traditional UKF without signifi- 0 2000 4000 6000 8000 10000 12000
cantly increasing algorithmic complexity, thus fully embodying the 4000 FFRLS
advantages of both algorithms. 3000 BCFFRLS
7~
4, Experimental analyses E_‘: 2000
O 1000
4.1, Experimental test platform ) . ) X )
00 2000 4000 6000 8000 10000 12000
In this study, the experimental setup comprises a battery test system 1200y FFRLS
responsible for controlling and documenting the battery's charge and 1000 BCFFRLS
dlscharge cycles, thls system plays a key role in recording data like ~ 800
voltage, current, and time. Additionally, a thermostat regulates the E."a
ambient temperature around the battery. To maintain consistency and &)
Open Clrcuit Voltage (OCV) stability before and after the experiment, all
experiments were carried out at a steady temperature of 25 °C, without 00 2000 4000 6000 8000 10000 12000

taking into account the potential impact of battery aging on the obtained
result. Utllizing this equipment framework, all lithium battery testing
experiments can be completed.

t(s)

Fig. 5. Parameter Identification outcomes by FFRLS and BCFFRLS in the
DST trial.
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Table 2

Performance Indlcators of FFRLS algorithm and BCFFRLS algorithm under DST.
Algorithmn Max Mean RMSD
FFRLS 0.4040 0.0106 0.0207
BCPPRULS 0.3724 0.0052 0.0170

Table 3

Performance Indicators of FFRLS algorithm and BCFFRLS algorithm under
PFUDS.

Algorithm Maox Mean RMSD
FFRLS 0.1068 0.0145 0.0191
BCPPRLS 0.1423 0.0076 0.0128

Whereas the functional link between OCV and SOC {s nonlinear, in an
effort to obtain data to determine the assoclation between them, con-
stant current HPPC experiments must be performed on the battery In the
following steps: (1) After fully charging the battery, leave it to stand for
2 h. Mark the SOC at this moment as 1, and the initial OCV is recorded.
(2) The battery underwent a discharge process at a current of 1A until

the SOC of the battery decreased to 90 %. (3) Following the discharge,
the battery was allowed to rest for 2 h, after which the OCV is docu-
mented. (4) Repeat the aforementloned steps (2) and (3) until the SOC
decreases to 0 %, or the experiment concludes when the discharge cut-
off voltage is reached. Table 1 below illustrates the measured OCV-SOC
relationships, whilst Fig. 4(a) and (b) deplcts the corresponding changes
in voltage and current.

The data in Table 1 enables fitting of the OCV-SOC relationship. The
OCV-SOC fitted curves for varlous orders were derived using MATLAB's
Curve Fitting Tool. The accuracy of fittlng was assessed using the Root
Mean Square Deviation (RMSD), with a lower RMSD value Indicating a
superlor model fit and greater precision in data prediction. Typlcally,
the RMSD diminishes as the order increases, but there {s a potential for
over-fitting at higher orders. For an optimal balance of accuracy and
complexity, we chose an eighth-order fitted curve with {ts RMSD of
0.0054 to deplct the OCV-SOC relatlonshlp, The OCV-SOC fitting curves
and RMSD curves are deplicted In Flg. 4(c) and (d), with the corre-
sponding mathematical relatlonshlips are detailed in Eq. (45).

Uacy(SOC) = —95.6819S0C" + 332.365850C7 — 427.7337S0C*
+228.6584S0C° — 19.359280C" — 24.625550C° -+ 6.7687S0C*

+ 0.388350C + 3.385 (45)
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Table 4

The performance indicators of the UKF algorithm when the P is positive definite.
Algorithm Max Mean RMSD Time(s)
UKF 0.1060 0.0311 0.0421 2.2247
UKFXIN 0.0747 0.0057 0.0095 2.4036
QRUKFXTN 0.0747 0.0057 0.0095 5.6483
EVDUKFXIN 0.0747 0.0057 0.0095 2.9043
SVDUKFXIN 0.0747 0.0057 0.0095 2.8986

Table 5

The performance indicators of the UKF algorithm when the P is semi-positive
definite.

Algorithm Max Mcan RMSD Time(s)
QRUKFXIN 0.2084 0.0074 0.0110 53171
EVDUKFXIN 0.0787 0.0074 0.0116 2.7556
SVDUKFXIN 0.0787 0.0074 0.0116 28381

Table 6

The performance indicators of the UKF algorithm when the P is indefinite.
Algorithm Maox Mean RMSD Time(s)
QRUKFXIN 0.1271 0.0063 0.0101 6.3091
EVDUKFXIN 0.1271 0.0059 0.0101 6.2799
SVDUKFXIN 0.0793 0.0061 0.0102 2.8911

5. Results and discussion
5.1. Parameter identification results

To verify the feasibility of the constructed model and the effective-
ness of the proposed parameter identification method, various algo-
rithms were employed for parameter identification. The parameter
identification results are presented in Fig. 5. The outcomes of the
Identified parameters and the actual operating current data are fed into
a second-order RC model. Subsequently, different algorithms were
employed to derive simulated and actual voltage curves under two
operational conditions, to validate the accuracy of the model and pa-
rameters. Results from the simulations under Dynamic Stress Test (DST)
and Federal Urban Driving Scheme (FUDS) conditions, relevant for
urban driving scenarios, are shown in Fig. 6.

Fig. 6(b) and (d) illustrate that the voltages simulated by the
BCPFRLS algorithm are more aligned with the actual experimental
voltages when compared to those produced by the FFRLS algorithm.
This phenomenon cen be attributed to the BCFFRLS algorithm reducing
the impact of measurement errors on parameter estimation by mini-
mizing the square of the sum of the model bias and measurement re-
slduals. Consequently, the BCFFRLS algorithm achieves more precise
slmulation results.

Tables 2 and 3 list three performance metrics for both algorithms:
Maximum Error (Max), RMSD, and Mean Absolute Error (MAE). Lower
values in these metrics indicate the greater simulation accuracy and
superior performance of the chosen algorithm. Therefore, when
comparing these metrlcs of the BCFFRLS and FFRLS algorithms during
model paremeter Identificatlon, it is apparent that the BCFFRLS algo-
rithm significantly outperforms the FFRLS algorithm.

5.2, Stablllty and veloclty analysis of SOC estimation

In real-world implementations of the UKF, consldering the update of
the error covariance matrix, it may become non-positive definite during
the iteration process, which poses certain challenges to the algorithm’s
stability. Therefore, in this section, we take the HPPC case as an example
to estimate the SOC, and firstly, we verify whether the proposed three
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matrix decomposition methods can replace the Cholesky Decomposition
in the original UKF by configuring the positive definite covariance ma-
trix (P). The initial configurations for the P, Q; and Ry are provided in
Eq. (46). Fig. 6 illustrates the outcomes of SOC estimation using different
UKF algorithms in HPPC operational conditions.

1x107? 0 0
P= 0 1 x 107 0
0 0 1 x 1072
1x10°* 0 0 (46)
g= 0 1x10-% 0
0 0 1x10°*
R=0.01

Overall, the SOC estimation outcomes from various UKF algorithms
correspond with the actual SOC. As indicated In Fig. 7(b), the SOC es-
timations from UKF exhibit greater discrepancies in the later stages of
the estimation process, which Is because UKF does not compute the
sigma points for the priori probability distribution of the state variable at
time k and does not update the P, resulting in a significant decrease in
SOC estimation accuracy at the later stage. For a more nuanced com-
parison of the accuracy among five UKF algorithms, three performance
indicators for SOC estimation were calculated: MAX, RMSD and MAE.
Table 4 shows that the SOC estimation results for UKFXIN, QR-UKFXIN,
EVD-UKFXIN and SVD-UKFXIN are remarkably similar, with {dentical
values for these three metrics. As explained in Section 3.3, when the
other initial parameters are consistent and the initial P Is symmetric
positive definite, the QR Decomposition, Eigenvalue Decomposition and
Singular Value Decomposition can replace the Cholesky decomposition.

Next, we compare the stability of five different UKF algorithms. In
practical applications of the UKF, instances of semi-negative and nega-
tive definite error covariance matrices are infrequent, leading us to
primarily concentrate on cases with semi-positive and indefinite error
covariance matrices. It is essential to note that our focus is solely on
alterations to the error covariance matrix, while keeping the Q and Ry
parameters constant. The specific details are as follows:

1) The initlal P is a symmetric semi-positive definite matrix, defined as
0 0 0
0 1x107? 0
0 0 1x10™

2) The initial P is a symmetric indefinite matrix, defined as

1x1073 0 0
P= 0 -1x107? 0

0 0 1x107?

P=

When the P is non-positive definite, the traditional UKF algorithm
and the UKFXIN algorithm that considers covariance updating are
ineffective in estimating SOC. Conversely, this study proposes innova-
tive algorithms, namely QR-UKFXIN, EVD-UKFXIN, and SVD-UKFXIN,
which have demonstrated successful SOC estimation capabilitles. The
estimation outcomes are illustrated In Fig. 7. Because of the difficulty in
finding distinctions from the charts, we have also calculated the three-
performance metrics for SOC estimatlon, as detailed [n Tables 5 and 6.
It's noteworthy that the absolute values of the diagonal elements of the
initial P are Identical in both cases, resulting in the same three perfor-
mance metrics for thelr SOC estimations.

The martrix decomposition results of the three algorithms might vary
slightly due to factors like computer character length limitations and
differences in decomposition methods, further causing discrepancles in
the estimation results for SOC. Furthermore, by analyzing the runtime of
these algorithms, It's observed that all three proposed algorithms exhibit
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Fig. 8. (a) SOC estimation outcomes in the DST trial. (b) SOC estimation errors in the DST trial. (c) SOC estimation outcomes In the FUDS trial. (d) SOC estimation

errors {n the FUDS trial.

Table 7 Table 8

Performance indicators of different KF algorithm in the DST trial. Performance indicators of different KF algorithm in the FUDS trial.
Algorithm (50C) Max Mean RMSD Algorithm (SOC) Max Mean RMSD
EKF (0.9) 0.1 0.0195 0.0219 EKF (0.9) 0.1 0.0105 0.0130
EKF (0.7) 0.1 0,0193 0.0218 EKF (0.7) 0.1 0.0104 0.0130
UKF (0.9) 0.1 0.0193 0.0212 UKF (0.9) 0.1 0.0104 0.0123
UKF (0.7) 0.1 0.0192 0.0210 UKF (0.7) 0.1 0.0103 0.0122
DEKF (0.9) 0.] 0.0171 0.0197 DEKEF (0.9) 0.1 0.0090 0.0104
DEKF (0.7) 0.1 0.0171 0.0197 DEKEF (0.7) 0.1 0.0089 0.0103
SVDMIAUKEF (0.9) 0.1 0.0071 0.0092 SVDMIAUKEF (0.9) 0.1 0.0076 0.0091
SVDMIAUKF (0.7) 0.1 0.0070 0,0092 SVDMIAUKF (0.7) 0.1 0.0076 0.0091

longer run-times compared to the traditional UKF. Notably, the runtime
of the SVD-UKFXIN algorithm is similar to that of the tradidonal UKF,
making it a viable option for practical applications,

5.3. Robustness analysls of SOC estimation

It is widely recognized that the precision of KF series of algorithins is
significantly influenced by the accuracy of the Inital parameters,
However, in practical applications, the jnitial SOC values may be
incorrect, presenting some challenges to the robustness of the algorithm,

Therefore, In this section, we take the DST and FUDS working conditions
as an example to estimate the SOC, where the initial SOC is set to 0.9 and
0.7 to verify the robustness of the algorithms, and take the SVD-UKFXIN
algorithm as an example, building upon this, the multi-interest theory
and the adaptive link were introduced to refine SOC estimation accu-
racy. The estimation outcomes are also evaluated and compared with
the results from several prevalent algorithms such as EKF, UKF, and
DEKF. When a substantial discrepancy exists between the initdal SOC
estimation and the actual SOC, choosing a smaller window M could
result In an enlarged covariance matrix for process and measurement
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noise. subsequently impacting the accuracy of SOC estimation out-
comes. Therefore, in such circomstances, we have set M at 100 while
keeping other parameters constant.

The robustness analysis outcomes are depicted in Tig. 8(a) and (c).
Through local zoom-in observation, it is shown that the proposed
methods rapidly rectify the initial SOC discrepancies and accurately
follow the real SOC. Moreover, the SOC estimation error curves in Fig. 8
(b) and (d) illustrate that once the initial error is adjusted, the SOC
estimation error remains consistently in a range of 0 %-5 % for various
initial SOC situations. Performance metrics for the four algorithms are
calculated in Tables 7 and 8. The results demonstrate thet the Max,
Mean, and RMSD values for the SVD-MIAUKFXIN algorithm are lower
than those recorded for the EKF, UKF and DEKF algorithms. Conse-
quently, this indicates thar the SVD-MIAUKFXIN algorithm is satisfac-
torily robust to inacecurate initial SOC values and surpasses the other
algorithms in performance.

6. Conclusions

In this paper, we introduce an innovative approach to enhance the
accuracy and stability of SOC estimation in battery management sys-
tems. Our innovation involves the adoption of three new matrix
decomposition methods to replace the traditional Cholesky Decompo-
sition utilized in the original UKF. Addidonally, we optimize the FFRLS
algorithm using bias compensation, introducing the BCFFRLS algorithm
for improved parameter cstimation accuracy. The feasibility of the
constructed model and the proposed BCFFRLS algorithm is verified
under DST and FUDS trials, and the accuracy reaches 0.76 %, compared
to the FFRLS algorithm. Then the HPPC trial verifies that the QR-
UKFXIN, EVD-UKFXIN and SVD-UKFXIN can estimate the SOC even
when the error covariance matrix is non-positive, which enhances the
stability of the UKF series of algorithms in practical applications. Finally,
the accuracy of the proposed algorithm was verified in DST and FUDS
experiments, and the robusmess of the algorithm was also tested using
two different initial SOC values. The outcomes indicate that, compared
to the EKF, UKF, and DEKF, the accuracy of the proposed algorithm
reaches 0.7 %. These outcomes confirms that the BCFFRLS-SVDMIAUKF
proposed here can effectively estimate the SOC and demonstrates high
robusimess and convergence.

Indeed, the algorithm presented in this study has its imperfections.
To optimize the FFRLS algorithm using the bias compensation idea, the
initial value of the parameters must be set twice, this results in a large
error at the start of the estimation. Future work will focus on optimizing
the inidal parameter values and the forgetting factor to minimize this
error. Furthermore, due to the introduction of multi-interest theory and
the adaptive link, coupled with the application of Singular Value
Decomposition to improve the algorithm's stability, unavoidably leads
to increased computarional complexity and longer execution times. To
address these challenges, subsequent research will explore methods to
optimize computational efficiency without compromising the algo-
rithm's robustness. Moreover, exploring the application of novel matrix
decomposition techniques within Cubature Kalman Filtering could offer
valuable insights, potentially broadening the scope of our findings. This
direction invites further investigation into refining filter algorithms for
improved performance and reliability in nuanced applications.
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