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ABSTRACT: Simulation of dense gas−solid flow in fluidized beds is a computationally
intensive procedure, and emerging speedup simulation methods are still unsatisfactory. This
work developed a pioneering data-driven reduced-order model (ROM) for efficient modeling
of dense gas−solid flow in bubbling fluidized beds (BFB) by integrating the proper
orthogonal decomposition (POD) and the radial basis function neural network (RBFNN).
Specifically, this study extracts the fundamental eigenvectors of the gas−solid flow process
and constructs a prediction function for the corresponding eigenvector coefficients. The
effectiveness of this ROM is conclusively assessed by comparing it with the full-order model
(FOM) in terms of simulated results and performance criteria. The results indicate that the
10-bases-ROM and 64-bases-ROM exhibit 50 and 90% of the energy, respectively, and
achieve flow field reconstruction accuracy of 50 and 90%. Moreover, compared to the FOM,
the 10-bases-ROM and the 64-bases-ROM demonstrate 700-fold and 120-fold increases in
simulation efficiency, respectively. These findings indicate that the proposed model has the
potential to be an effective tool for industrial engineering process predictions in real time.

1. INTRODUCTION
Nowadays, the exacerbating climate change and the exhaustion
of fossil fuel reserves present significant obstacles to the progress
of human civilization. Consequently, the fluidized bed reactor,
which is an effective and energy-conserving energy utilization
system, has gained increasing interest due to its superior gas−
solid interaction efficiency, exceptional heat and mass transfer
properties, and minimal pollution emission.1,2 The fluidized bed
is a highly intricate multiphase reaction system in which a large
number of extremely complex physical and chemical processes
occur, involving nonlinear coupling of mass, momentum, and
energy between phases.3

With advancements in computer technology, numerical
simulation has gained widespread acceptance and has become
an essential tool in fluidized bed studies, which provides a highly
efficient and cost-effective way to gain insights into the gas−
solid flow, temperature, and gas component distributions in
fluidized beds.4−6 Several simulation methods have been
developed, including the Euler−Euler method and the Euler−
Lagrangian method. Of these methods, the two-fluid method
(TFM) in the Euler−Euler framework is widely utilized in
numerical simulations of fluidized beds. The TFM simulation
has been proven to be computationally efficient. However, the
high-fidelity full-order model (FOM) of the TFM simulation
still demands substantial computational resources due to the
requirement of a tiny time step to accurately resolve each
iteration of the discretized governing equations. As a result, the

FOM is inadequate to meet the industry’s real-time response
demands.7

Currently, data-driven reduced-order model (ROM) ap-
proaches have shown great potential for efficient and accurate
modeling of high-dimensional nonlinear systems. This method
relies on basis projections to effectively decrease the effective
degrees of freedom in the original system, thus reducing the
computational cost of high-fidelity simulations. By constructing
a low-dimensional and parsimonious dynamical system from
existing data, the ROM can considerably reduce the complexity
of the original system, ultimately resulting in improved
computational efficiency.8 At present, many ROMs have been
proposed, among which proper orthogonal decomposition
(POD) is the most representative.7,9−12 POD originated from
the statistical analysis of vector data and has been widely used in
data dimensionality reduction, flow field analysis, and other
application scenarios.13 The research on POD-based ROM
represents a new and popular trend in utilizing hybrid machine
learning methods to reduce the complexity of the network
structure and flow. In terms of portability, this method is
applicable to various flows, making it a universal approach.14
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The POD-based ROM can be divided into an intrusive
ROM15 and a nonintrusive ROM. The intrusive ROM approach
involves solving the governing equations and projecting them
into a subspace comprising proper orthogonal basis vectors to
derive ordinary differential equations. Although this approach

boasts a more mathematically rigorous form and stronger
generalization ability, it may not be conducive to code
reproduction and could lack stability. In contrast, the non-
intrusive ROM approach establishes a surrogate model between
the input and output data, extracts the appropriate orthogonal
basis vectors from a snapshot, obtains the POD coefficients
using the surrogate model, and constructs the ROM by
interpolating the hypersurface. Surrogate models encompass a
variety of models, including Kriging models, radial basis
functions (RBF), neural networks, and others. Specifically, the
Kriging model is an unbiased estimation model that utilizes
known test point data to predict the response of unknown test
points. The principle of the RBF is to utilize the superposition of
a series of kernel functions to fit the original function. As a
powerful tool, the neural network has been widely used in

modeling gas−solid flow. Zhu et al.16,17 pioneeringly used
traditional and artificial neural network (ANN) data-driven
modeling (DDM) methods to derive a variety of models,
including the mesoscale drag model, heat transfer model, and
reaction model in filtered gas−solid flow with big data from
high-resolution simulations. Compared with traditional corre-

Figure 1. Illustration of modal decomposition of a dense gas−solid flow.

Figure 2. RBF neural network structure.

Figure 3. Schematic representation of the bubble search algorithm.
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lation prediction, DDM exhibits higher accuracy. The results
also demonstrate that the coarse-grid simulations combined
with ANN agree well with experiment measurements.

By adopting this approach, a more efficient and stable method
of constructing ROMs can be achieved.9 The nonintrusive
model approach offers several advantages, such as code
reusability, ease of transplantation, high cohesion, low coupling,
relative stability, a simple structure, and higher computational
efficiency. Due to these benefits, the present study adopts a
nonintrusive approach to construct the ROM.
Currently, several researchers have conducted extensive

research on ROMs. In terms of the nonintrusive ROM, some
researchers have combined the POD method with RBF and
Krigingmethods and have applied it to various fields such as heat
conduction, natural convection, phase change heat storage,
aerothermodynamics of hypersonic vehicles, and computational
fluid dynamics (CFD) analysis of wind loads for photovoltaic
systems.18−22 Other researchers have focused on uncertainty
quantification in CFD, proposing a surrogate model based on
POD-Kriging to quantify uncertainty in the dynamical
system.23−25 Additionally, compressive sensing extracted from
the coarse-grid covariance matrix has been combined with this
method to achieve greater efficiency.25 Lee et al.26 combined

Figure 4. Comparison of the predicted bubble diameter with the
experimental data.34

Figure 5. Schematic diagram of the BFB.

Table 1. Simulation Settings of the Validation

parameters value

geometry configuration, x × y × z 20 mm × 5 mm × 50 mm
computational grids, Nx × Ny × Nz 40 × 10 × 100
material quality, m 2.145 g, 2.681 g
fluid velocity, Ubg 0.10 m/s, 0.18 m/s
time step, Δt 5 × 10−4 s

Table 2. Cases Studied in This Work

case-1 (base case) case-2 case-3

initial bed material quality 2.145 g 2.145 g 2.681 g
inlet velocity 0.10 m/s 0.18 m/s 0.18 m/s

Table 3. Physical Properties Used in the Simulations

Gas Phase

viscosity Pa·s 1.8 × 10−5

density kg/m3 1.0
Solid Phase

density kg/m3 2.5 × 103

diameter mm 0.16
frictional viscosity kg/(m·s) 0.3
restitution coefficient 0.9
virtual mass coefficient 0.5
packing limit 0.63

Figure 6. Time-averaged solid holdup distribution obtained from the
POD base.
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POD with the Kriging/RBF method to develop a nonintrusive
ROMof a 500MW four-corner tangential pulverized coal boiler,
which simplified the three-dimensional (3D) furnace to a two-

dimensional (2D) plane and reproduced the total amount of
secondary air and the 3D distribution of combustion
stoichiometric ratios in the organ region. Li et al.27 adopted a

Figure 7. Solid holdup of the first 8 orders of POD bases.

Figure 8. (a) First one hundred orders of energy sorting; (b) cumulative modal energy for the first k orders (k from 1 to 100).
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POD method based on the Lanczos algorithm to efficiently
generate a set of POD basis vectors. After projecting the
numerical snapshot into the simplified space constructed by the
POD basis vectors, the RBF was used to construct a series of
multidimensional functions of POD coefficients, thus develop-
ing a nonintrusive ROM for large-scale Euler−Lagrangian
simulations, overcoming the huge computational cost problem
caused by the CFD-DEM method, and effectively reproducing
the gas−solid flow in a bubbling fluidized bed (BFB).
However, current literature indicates a dearth of online real-

time predictive ROM that caters to fluidized beds. Moreover,
there are few reports on ROMs tailored for fluidized beds.
Hence, this study’s innovation lies in the construction of an
innovative ROM utilizing the POD/RBFNN method, enabling
the real-time prediction of gas−solid flow and its primary
characteristics in the BFB. Critical parameters in the BFB,
including bed expansion height, bubble distribution, and others,
are predicted in real time. The ROM combined with actual data

is suitable for application in a digital twin setting, which consists
of physical products, virtual products, and data connections. The
results of this study exhibit good agreement with those
computed by the TFM. Single-step prediction and multistep
prediction are adopted for online ROM, respectively. Single-step
prediction exhibits exceptional accuracy in short-term pre-
diction, whereas multistep prediction is more efficient. This
paper utilizes a bubble search algorithm to efficiently and
precisely characterize bubbles in the BFB reactor. The algorithm
facilitates the acquisition of plentiful physical−thermal−
chemical properties of the bubbles.28 Moreover, this study
showcases the computational efficiency superiority of the
developed ROMs. The proposed ROMs enable online real-
time prediction, offering significant guidance for industrial
production processes.
The paper is organized as follows. Section 2 outlines the

mathematical approach to the ROM and bubble search
algorithm. Section 3 presents the numerical setup for the BFB.

Figure 9. Time-evolution profiles of the coefficients of POD bases.
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In Section 4.1, POD mode decomposition is described.
Subsequently, Sections 4.2 and 4.3 provide the reconstruction
accuracy for various orders of ROM and compare the accuracy
difference between single-step prediction and multistep
prediction. Furthermore, Section 4.4 quantifies the time
reduction achieved by different-order ROMs. The conclusions
and future developments are presented in the final section.

2. METHODOLOGY
The formulation of the CFD-DEM and TFM methods
employed is briefly reviewed in Section 2.1. The basic ideas
and specific calculation processes of the data-driven method are
summarized in Section 2.2. A novel bubble search algorithm is
presented in Section 2.3 for bubble characterization.

2.1. CFD-DEM and TFM Methods. The mainstream
methods for numerical simulation of dense gas−solid systems

Figure 10. Solid holdup distributions at different time instants: (a) t = 1s; (b) t = 2s; (c) t = 4s; (d) t = 8s; (from left to right: FOM,10-bases-ROM,35-
bases-ROM, and 64-bases-ROM).

Figure 11.Bed expansion height in the BFB predicted by the FOMand single-step ROM inCase-1: (a) time-evolution bed expansion height; (b) time-
averaged bed expansion height.
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are the CFD-DEM and TFM methods. In the former method,
the movement of each solid particle is tracked individually in the
Lagrangian framework using Newton’s second law. In the latter
method, the solid particle is assumed to be a continuous phase
and is described by solving the volume-averaged Navier−Stokes
equations. The CFD-DEM and TFMmethods have been widely
applied in various chemical engineering processes. The main
equations involved are outlined in Tables S1 and S2 of the
Supporting Information.

2.2. Data-Driven Methods. The data-driven method used
in this work combines proper orthogonal decomposition (POD)
and a radial basis function neural network (RBFNN), which is a
low-dimensional approximation of high-dimensional flow fields.
POD modes reconstruct a data set by extracting the dominant
eigenvectors based on Frobenius norm optimality, with the
modes ranked in terms of energy content. RBFNN is used to
predict the selected POD mode coefficients. Combining the
decomposed POD coefficients with RBFNN, the ROM of the
flow field can be obtained. This ROM exhibits robust stability,
enabling highly stable predictions within its corresponding
mode coefficients without the concerns of divergence. The
algorithm is summarized in Figure 1, which shows the spatio-
temporal coherent structures with different characteristics
obtained by processing the same series of time snapshots with
POD. The specific formulation of the POD and RBFNN will be
presented in Sections 2.2.1 and 2.2.2.
2.2.1. Proper Orthogonal Decomposition (POD). The POD

method calculates the eigenvalues and eigenvectors of the FOM
matrix to extract the dominant features of the original flow field.
These features are sorted in descending order based on their
corresponding eigenvalues, which indicate the number of
features contained in the corresponding eigenvectors. A finite
number of eigenvectors are then chosen to form the POD basis,
which encapsulates most of the information on the flow field,
enabling the decomposition of the flow field to be accomplished.
At each time step, every snapshot of the target variable

(voidage) is taken from the FOM and is used to construct a
matrix (W, M × N) according to the distribution of voidage in
space and time, where M is the number of grids and N is the
number of snapshots in the full-order simulation. The POD
method uses only a limited number of basis functions to
construct a ROM, with the number of basis vectors k ≤min{M,
N}. In general, the number of grids in the simulation is much
larger than the number of snapshots on the time scale, i.e.,M ≫
N. Therefore, k is less thanN in most ROMs. Through the linear
combination of k basis vectors, a solution is obtained whose
dimension is much smaller than that of the original data set.
POD construction steps are as follows:
First, the matrix W obtained is time-averaged and

decentralized, and the time-averaged operation is

=
= ×

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
W x

M
W x( )

1
( )

i

M

i
j

N

0
1 (1 ) (1)

whereWi
j (x) is the target variable value of each grid (i) at the

time (j), M is the number of grids, and N is the number of
snapshots in the full-order simulation.
Decentralization:

{ } = { }x x x w W w W w W, , ..., , , ...,n n1 2 1 0 2 0 0 (2)

where wi is the original data and xi is the data after
decentralization.

To ensure that the vector Φi can contain most of the energy
and features after projection, it is necessary to minimize the
distance from the data xi to the projection vector Φi, i.e., to
maximize the following formula:

| · |
n

x1

i

n

i i
(3)

where |xi·Φi| is the inner product of the vector xi and the vector
Φi, which is equivalent to

|| || = =
n

X
n

X X
n

XX
1 1

( ) ( )
1T

i
T

i
T T

i i
T T

i2
2

(4)

whereX = [x1, x2, x3, ···, xn],XXT is a positive semidefinite matrix
(eigenvalue greater than or equal to 0).
In this work, the singular value decompositionmethod (SVD)

is used to solve the maximum value of eqs 3 and 4. As a
realization of the proper orthogonal decomposition method,
SVD has a wide range of applications. SVD compresses a large
matrix into the form of multiplication of several small matrices
and can decompose any form of a matrix, so there is always a
singular value decomposition for any form of matrix A: A =
U∑VT. The matrix sizes of A, U, ∑, and VT are (M × N), (M ×
M), (M × N), and (N × N), respectively. Among them, the
orthogonal vector in U is called the left singular vector; the
elements in∑ except the diagonal are all 0, and the elements on
the diagonal are called singular values; the orthogonal vector in
V is called the right singular vector. In general, the values of ∑
are given in descending order.
Therefore, the reduced order basis can be obtained as follows:

|| ||
|| ||
X

X( )
T

k

k
k

T

(5)

where σk (XT) is the singular value of XT (i.e., the square root of
the eigenvalue λk of XXT) and Φk is the corresponding
eigenvector. The singular value is the largest at k = 1. According
to the maximization principle in eq 4, it can be obtained that the
eigenvector of Φ1 contains the most features, and Φ2 is the
eigenvector containing the most energy after Φ1. The
eigenvalues and corresponding eigenvectors are obtained in
turn, and the reduced order basis is obtained.
The energy proportion of the first k order reduced basis is

= =

=

I k( ) i
k

i

i
N

i

1

1 (6)

Therefore, depending on the required accuracy, the original flow
field can be restored by selecting an appropriate orthogonal
basis.
In a transient fluidized bed process, the results are predicted

based on the extracted orthogonal basis vectors:

= + ·
=

W x t W x t x( , ) ( ) ( ) ( )
k

N

k k0
1

POD

(7)

where αk(t) is a coefficient that varies with time in transient
fluidized bed simulation.Φk(x) is the orthogonal basis selected
by SVD decomposition. Assuming that the energy contained in
the NPOD orthogonal bases meets the requirements, by
multiplying and summing the first NPOD orthogonal bases and
coefficients, most of the features in the FOM are obtained, and
then the target variable is predicted.
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2.2.2. Radial Basis Function Neural Network (RBFNN).
RBFNN is widely used in time series forecasting. Compared
with deep machine learning, such as long short-term neural
networks, RBFNN has a faster training speed, is easier to train,
and does not require a sufficient training data set. These
characteristics are very important in a real digital twin system,
which requires the ability to quickly build predictive models.
Compared with polynomials, RBFNN has better performance in
degrees of freedom and accuracy. Hence, in this paper, RBFNN
is selected as the coefficient prediction method. The RBFNN
contains a hidden radial basis layer and a output linear layer. In
this paper, The Gaussian kernel function is selected as the RBF
in the hidden layers, the number of which depends on the actual
needs of the problem. Nonlinear data in low-dimensional space
are transformed into linear separable data in high-dimensional
space. The output layers are obtained through the linear
mapping of the hidden layer, which means the output is the
linear weighted sum of the hidden layer neural units.
As the base in hidden layers, the RBF is a scalar function that

exhibits radial symmetry. It is typically defined as a monotonic
function of the radial distance, often expressed in terms of the
Euclidean distance between a given sample and the center of the
data. By utilizing the RBF, it becomes possible to obtain the
coefficients of the corresponding POD bases at a specific target
time, based on the coefficient values of a certain POD basis at a
known time. Consequently, it becomes feasible to predict the
time series through this process. To elaborate on this further, the
single-step resolution process can be described as follows:
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where αk
n is the coefficient of the kth POD basis at time n. αk

n−i is
the POD basis coefficient vector at the (n − i) time. NPOD and
Ninput are the number of POD bases and RBFNN inputs,
respectively.
RBF can be regarded as a linear combination of a set of scalar

functions and corresponding weighting coefficients:
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where ϕ(∥αk
input − α̂(j)∥) is the kernel function, which

represents the function value related to the L2 norm between
the known point and the predicted point; ωk (j) is the desired
RBF weight coefficient. Assuming that NRBF is the number of
known interpolation nodes,
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where f (α̂(j)) is the value corresponding to α̂(j).
Then, eq 9 can be transformed into (the subscript k is dropped

for convenience):
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where (if the Gaussian kernel function is adopted):
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Φ = [ϕij] is the interpolation matrix, and eq 11 can be simplified
as

=W A (13)

Substitute eqs 10 into 13 to obtain the RBF weight coefficient
value. Substituting the weight coefficient into eqs 8 and 9, the
POD coefficient value αk(tn) at time tn can be obtained.
As mentioned above, the data of the next single step is

predicted based on the ability to obtain actual data in time,
which is called a single-step prediction. A multistep prediction is
required if a more extended period needs to be predicted. The
multistep prediction is given in eq 14:
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where Noutput is the number of RBFNN outputs.
As shown in Figure 2, this RBFNN predicts a POD coefficient

at an unknown time through the known POD coefficients in 15
time steps. The RBFNN contains two layers. The first layer is the
hidden radial basis layer, which uses the radial basis function to
calculate the weighted input. The number of neurons is 185,
which is consistent with the number of training samples. The
second layer is the output linear layer, which is used to calculate
the output of the network. Both layers have a bias b. The
RBFNN is constructed by MATLAB. To avoid overfitting, the
propagation spread of the RBF needs to be regulated. The
choice of spread value affects the diffusion degree of the model,
consequently impacting its complexity and generalization
performance. A smaller spread value results in a sharper RBF,
leading to a more complex model and vice versa. The spread of
radial basis functions is set to 500. As for model training, the data
set used for training the RBFNN is the FOMdata of the first 200
time steps.

2.3. Bubble Search Algorithm. Bubbles are generated in a
BFB reactor when the superficial gas velocity exceeds the
minimum fluidization velocity (Umf) during gas−solid flow in a
fluidized bed.28 Currently, several studies have reported on the
observation of mesoscopic characteristics of bubbles in a gas−
solid flow. Tian et al.29 pioneeringly proposed the density-based
spatial clustering of applications with noise (DBSCAN) method
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for detecting particle clusters in particle−fluid systems. This
method defines dense particle clusters based on different system
structures, thereby requiring minimal manual intervention.
Subsequently, the DBSCAN-based method was compared with
the probe method and the Voronoi-based Method. It was found
that both the DBSCAN-based method and the Voronoi-based
method can provide additional information regarding cluster
shape, topology, and other factors. The kinetic analysis of
particle clusters using the Voronoi-based method allows for an
in-depth exploration of the intrinsic mechanisms involved in the
clustering process.30 In the context of this work, our primary
objective is to quantify the size and frequency of the bubbles for
ROM validation purposes. Consequently, acquiring detailed
information about the shape and internal mechanisms of
bubbles (or particle clusters) by such newer and more
sophisticated techniques is not deemed essential. Thus, the
following simplified bubble search algorithm will be employed,
as it sufficiently fulfills the validation requirements.
Bubble boundaries are identified as isosurfaces with a

threshold voidage of 0.6−0.8.31,32 In this work, a voidage of
0.8 is used as the critical voidage to identify the boundary of the
bubble. Technically, a bubble can be represented by many
neighboring cells with a voidage greater than a threshold. The
bubble search algorithm process is shown in Figures 3 and 4; the
main idea is as follows:

(1) The computing cells with voidage greater than 0.8 are
retrieved in the search domain and are put into the vector
Cellbub. The number of cells with voidage greater than 0.8
is counted, and the characteristics of the cell volume and
voidage are recorded. As shown in Figure 3, the voidage of
cells with specific tags 24, 33, 34, 43, 44, 53, 54, 63, 64, 74,
and 84 reaches the threshold. The specific cells are put
into the vector Cellbub and searched.

(2) For any cell i in Cellbub: ① Create a vector Bubi with cell i
as the target cell. As shown in Figure 3, cell 54 is the target
cell.②Retrieve the neighborhood of cell i inCellbub. If the
voidage is greater than 0.8, put the neighborhood cells

into the vector Bubi. Cells 43, 44, 53, 63, and 64 are put
into vectorBubi.③Use the adjacent cells in the setBubi as
the new starting cells and continue to search for the
corresponding adjacent cells until the number of cells in
the set no longer increases. In Figure 3, cells 33, 34, 74, 24,
and 84 are successively incorporated into the vector Bubi.
④ Delete the repeated cells in the vector Bubi.

(3) Subsequent searches are performed on all cells in Cellbub,
and if cell k is already contained in a bubble, the cell is
skipped. If cell k is not included in the bubble, repeat step
(2) until all cells of Cellbub are traversed and bubble
retrieval is completed.

Based on the bubble search algorithm, the bubble size is
calculated as follows:33

= ×d V2 3 /4b b
3 (15)

where Vb is the bubble volume, given by
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where Ncell represents the total amount of cells contained in the
bubble. Vcell,i represents the volume of the ith cell. εcell,i is the
voidage of the ith cell. The central coordinate of the bubble is
calculated by averaging the coordinates of all of the computa-
tional cells contained in the bubble:
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where Cb is the coordinate of the bubble. Ccell,i is the coordinate
of the ith cell.
The bubble search algorithm is verified with the experimental

measurement by Laverman et al.28,33 Figure 4 shows the
comparison between predicted values and experimental data on
the relationship between the bubble diameter and axial position
at different inlet velocities. At three inlet velocities, the
developed bubble detection algorithm can well capture the

Figure 12. Comparison of the frequency for bubbles in case-1: FOM (TFM), 10-bases-ROM, 64-bases-ROM (single step).
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variation trend of bubble volume as a function of the height,
indicating that the developed bubble search algorithm can
accurately predict the bubble behaviors in the BFB.
In this paper, the bubble search algorithm is carried out on

each snapshot to count the frequency of bubble emergence of
each size in all snapshots rather than the frequency of bubble
formation. When two bubbles overlap, fragment, and coalesce,
the statistical accuracy of the ROM and FOM will be slightly
affected, but the impact is insignificant. The bubble search
algorithm uses a threshold voidage as a principle for bubble
boundary determination, which will result in the inability to
accurately analyze the dynamic process of actual bubble
fragmentation and coalescence. However, in the context of
statistics, when an appropriate threshold voidage is specified and
the number of statistical bubbles is large enough, the error in the
fragmentation and coalescence process of a single bubble can be

neglected, and the statistical accuracy of bubble frequency will
be insignificantly affected.

3. NUMERICAL SETTINGS
In this section, the ROM is validated regarding gas−solid flow
dynamics in a BFB. The numerical settings in this work refer to
the study from Li et al.27 Figure 5 shows the schematic diagram
of the BFB, which has dimensions of 20 mm × 5 mm × 50 mm.
The computational domain is divided into 40 × 10 × 100
structured elements.
For the base case, the inlet velocity is set as 0.10 m/s, and the

outlet pressure is specified as 101,325 Pa. The walls are all
assigned with no-slip and constant temperature boundary
conditions. The Syamlal and O’Brien drag force model35 is
employed. The time step was set to 5 × 10−4 s, and the physical
time for each case is 10 s. The single snapshot time interval was 5

Figure 13.Time-evolution of bed expansion height and time-averaged bed expansion height in the BFB predicted by the FOM and single-step ROM in
Case-2: (a) time-evolution bed expansion height; (b) time-averaged bed expansion height.

Figure 14.Time-evolution of bed expansion height and time-averaged bed expansion height in the BFB predicted by the FOM and single-step ROM in
Case-3: (a) time-evolution bed expansion height; (b) time-averaged bed expansion height.
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× 10−3 s, so 2000 snapshots were obtained. Depending on the
number k of POD bases chosen, a matrix of (k × 2000) ROM
coefficients can be obtained. The detailed numerical settings are
given in Table 1. Table 2 shows the different cases studied in the
present work.
The thermophysical properties of particles are given in Table

3 and are consistent with the experiment. The viscosity and
density of the gas are 1.8× 10−5 Pa·s and 1.0 kg/m3, respectively.
The density and size of the particle are 2.5 × 103 kg/m3 and 0.16
mm, respectively.

4. RESULTS AND DISCUSSION
4.1. POD Analysis. Figure 6 shows the time-averaged solid

holdup in the central slice of the BFB (z = 0) of the base case
(Case-1) obtained from the FOM results. It can be seen that the
particles are mainly concentrated in the lower part of the bed
with a clear demarcation line from the freeboard. Figure 7 shows
themainmode diagrams after the flow field is decomposed, from
the first order to the eighth order. The solid holdup values of the
POD spatial modes are relative values, which appear fuzzy due to
the simple and regular characteristics of the modes. The first-
order mode is the most dominant mode of the flow field, and the
number of features contained decreases with the order.
Figure 8a shows the proportion of each mode’s energy to the

total energy at different orders of the base case. It can be seen
that the first-order mode contains the most features, accounting
for about 10.8%. As the order increases, the number of features
contained in each mode decreases step by step. After the 24th
order mode, the number of features contained in each mode is
less than 1%. The cumulative energy content of the first kmodes
at different orders is shown in Figure 8b. According to the
desired accuracy, the first kmodes are selected for superposition
to better reduce the flow process in the BFB. As indicated in eq 6,
different orders can be selected according to different accuracy
requirements. When the accuracy requirements are 0.5 and 0.9,
respectively, the orders can be chosen as 10 and 64, respectively.
Figure 9 shows the time-evolution profiles of the coefficients of
the first 10 orders of modalities. The distribution of the solid

holdup in the BFB can be fully demonstrated by combining each
mode with the corresponding coefficient at any given moment.
In this way, the flow field in the BFB can be obtained.
Figure 10 shows the reproduction of the solid holdup in the

BFB of the FOM, 10-bases-ROM, 35-bases-ROM, and 64-bases-
ROM at different time instants. It is noted that the 10-bases-
ROM is unable to accurately reproduce the solid holdup
distribution in the BFB, where many details are omitted. As the
number of orders increases, a more accurate flow field can be
achieved. For the modes with the inclusion of 64 orders, the
ROM can reproduce the flow field. Although the 10-bases-ROM
may not yield entirely accurate predictions of the flow field, its
high efficiency still holds significant industrial value. A
comparison with the 64-bases-ROM makes the difference in
accuracy resulting from varying orders more intuitive. Based on
the above results, the representative modes with the first 10
orders and the first 64 orders are used to construct the ROM of
the BFB and to compare the specific effect of the number of
orders on the reconstruction accuracy in the subsequent
sections.

4.2. ROM Model Validation at Different Basis
Numbers. Figure 11 shows the bed expansion height in the
BFB predicted by the FOM and single-step ROM at different
orders in the base case (Case-1). The TFM results in this work
are compared with the CFD-DEM results from Li et al.27 to
further prove the accuracy of ROM. The first 10 modes and the
first 64modes are selected in the ROM. Both the 10-bases-ROM
and the 64-bases-ROM can reproduce the bed expansion height
in the BFB, and the 64-bases-ROM has a better performance
than the 10-bases-ROM.
Figure 12 shows the frequency statistics for bubbles in the

BFB. The trend dependence of the frequency on bubble size is a
feature of the FOM, and the ROM is used to reconstruct this
feature. The 10-bases-ROM only retains 50% of the features of
the FOM, and the size of bubbles is based on the threshold
voidage. The voidage of the grid loses half of the features,
making it more difficult to determine the threshold grid of the
boundary. Hence, employing the 10-bases-ROM for quantifying
bubble frequency characteristics not only diminishes the bubble

Figure 15. Comparison of the frequency for bubbles of different sizes, including FOM(TFM), 10-bases-ROM, and 64-bases-ROM (single step): (a)
Case-2; (b) Case-3.
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frequency for each size but may also disrupt the trend
dependence of the predicted frequency on bubble size. This
error is to be expected. The 64-bases-ROM retains more
features, so trend dependence will be retained with a greater
probability. Compared with the FOM, the 10-bases-ROM

differs by an average value of 60%, and the 64-bases-ROMdiffers
by an average value of 27% for the frequency of all sizes of
bubbles. The difference between the 10-bases-ROM and the 64-
bases-ROM for the frequency of all sizes of bubbles is 48%. The
statistical difference between the FOM and ROM for smaller

Figure 16. Bed expansion height in the BFB predicted by the FOM, single-step ROM, and multistep ROM: (a) Case-1: time-evolution bed expansion
height; (b) Case-1: time-averaged bed expansion height; (c) Case-2: time-evolution bed expansion height; (d) Case-2: time-averaged bed expansion
height; (e) Case-3: time-evolution bed expansion height; (f) Case-3: time-averaged bed expansion height.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c03747
Ind. Eng. Chem. Res. 2024, 63, 1634−1648

1645

https://pubs.acs.org/doi/10.1021/acs.iecr.3c03747?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03747?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03747?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03747?fig=fig16&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c03747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


bubbles may be due to the neglect of some details in ROM,
making it difficult to capture tiny bubble structures. As the
bubble size increases, the difference between the FOM and
ROM gradually decreases, and the ROM has a better
performance in flow field reconstruction. Based on the above
results, a low-order ROM (10-bases-ROM) has a worse
performance on the flow field reconstruction, which has a
greater difference from FOM’s prediction results. In contrast,
the high-order ROM (64-bases-ROM) has a better performance
on the reconstruction of the flow field, which is in line with
FOM’s prediction results.

Figures 13 and 14 show the bed expansion heights in the BFB
for different cases (Case-2 and Case-3). Similar to Case-1, the
64-bases-ROM has a better performance than the 10-bases-

Figure 17.Comparison of the frequency for bubbles of different sizes (FOM (TFM), ROM (single step), ROM (multistep)): (a) Case-1; (b) Case-2;
(c) Case-3.

Table 4. Time Consumption of the POD

case case-1 case-2 case-3

POD [s] 29.9 33.2 35.9

Table 5. Time Consumption of the FOM and ROM

condition model CFD/prediction [s] reduction

case-1 FOM 34.7
ROM-10 0.048 723
ROM-64 0.269 129

case-2 FOM 35.6
ROM-10 0.056 635
ROM-64 0.295 121

case-3 FOM 34.0
ROM-10 0.046 739
ROM-64 0.262 130
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ROM in Case-2 and Case-3, demonstrating the applicability of
the ROM and the ability to complete the reduced order for
simulation results under different operating conditions.
Figure 15 shows the frequency statistics of bubbles in the BFB

for different cases (Case-2 and Case-3). It is noted that there is a
small difference between the FOM and the ROM with different
numbers of modes in the bubble distribution for Case-2 than for
Case-1 and Case-3 (as shown in Figures 12 and 15b), which
shows that the ROM’s spatial characteristics of the working
condition of Case-2 are easier to grasp. This is because
compared with Case-1 (inlet gas velocity: initial bed inventory
= 0.1 m/s: 2.145 g) and Case-3 (inlet gas velocity: initial bed
inventory = 0.18 m/s: 2.681 g), Case-2 has a higher ratio of inlet
gas velocity to initial bed inventory (inlet gas velocity: initial bed
inventory = 0.18 m/s: 2.145 g), which leads to a more vigorous
bubble movement, with less spatial detail being lost in all sizes of
bubbles in the ROM. Therefore, the ROM in Case-2 has a better
accuracy performance than in Case-1 and Case-3.

4.3. ROM Model Validation at Different Prediction
Steps. Figure 16 shows the bed expansion height in the BFB for
the FOM, single-step ROM, and multistep ROM in Case-1,
Case-2, and Case-3. The order number of the ROM is chosen as
64, and the prediction steps are chosen as 1 and 5. It can be seen
that the fluctuation of transient bed expansion height predicted
by multistep ROM and FOM are within the same fluctuation
range, and the time-averaged bed expansion heights predicted by
both single-step ROM and multistep ROM maintain a high
accuracy compared with the FOM. In Case-2, the difference in
the fluctuation characteristics of themultistep ROMand FOM is
relatively more obvious, which indicates that the multistep
ROM’s accuracy decreases when the flow field is more intense.
Figure 17 shows the frequency statistics for bubbles in the

BFB for the single-step ROM and the multistep ROM (Case-1,
Case-2, and Case-3). It is noted that there is a bigger difference
between the multistep ROM and the single-step ROM in the
bubble distribution for Case-2 than for Case-1 and Case-3,
which shows that the ROM’s temporal characteristics of the
working condition of Case-2 are more difficult to grasp. This is
because, compared with Case-1 (inlet gas velocity: initial bed
inventory = 0.1 m/s: 2.145 g) and Case-3 (inlet gas velocity:
initial bed inventory = 0.18 m/s: 2.681 g), Case-2 has a higher
ratio of inlet gas velocity to initial bed inventory (inlet gas
velocity: initial bed inventory = 0.18 m/s: 2.145 g), which leads
to a more vigorous bubble movement, with bubble temporal
characteristics captured more difficult in the multistep
prediction. Since the change of bubbles is relatively not drastic
in Case-1 and Case-3, the characteristics of time coefficients are
easier to grasp. Therefore, the ROM in Case-1 and Case-3 has
better stability than in Case-2.

4.4. Comparison of Model Accuracy and Computa-
tional Efficiency. ROM-10 represents 10-bases-ROM and
ROM-64 represents 64-bases-ROM. The simulation cases run
with a single core (12th Gen Intel(R) Core (TM) i7-12700H,
2.30 GHz). The ROM includes two steps: projection and
prediction. However, the projection process is performed before
prediction; therefore, it is not included in the ROM calculation
time. Table 4 shows the consumption time of the POD. Table 5
shows the time consumption of the FOM and single-step ROM
under different reduced basis numbers. The reduction is the
ratio of FOM (CFD) single-step calculation time to ROM
single-step calculation time. Among the three cases, the
calculation efficiency of the 64-bases-ROM increases by about

120 times, and the calculation efficiency of the 10-bases-ROM
increases by about 700 times as compared with the FOM.

5. CONCLUSIONS AND FUTURE DEVELOPMENTS
In this study, a ROM is constructed by using the POD/RBFNN
coupling approach to obtain the main flow modes of the BFB
and to make real-time predictions of some key parameters in the
BFB, such as bed expansion height and bubble distribution. The
ROMs are validated by comparing the predicted results with the
FOM. In addition, the superiority of the ROM in terms of
computational efficiency is demonstrated through a comparison
of the computational times. The conclusions are as follows:
(1) The ROM constructed by POD/RBFNN can reduce the

dimensionality of high-dimensional data, accurately
reproduce the internal flow fields within the BFB, preserve
the flow-related structures and modes that dominate the
fluid dynamics, and improve the physical interpretability
of the model.

(2) The 10-bases-ROM and 64-bases-ROM contain 50 and
90% of the energy, respectively. From the time-averaged
and instantaneous results of bed expansion height, the
results of different order reductions are in good agreement
with the results of the FOM. In terms of bubble
distribution, the 64-bases-ROM is more accurate than
the 10-bases-ROM due to more detail contained in higher
orders.

(3) As the ratio of inlet gas velocity to initial bed inventory
increases, it is easier to grasp the spatial modes of the BFB
flow field, but it is more difficult to predict the time
coefficients.

(4) The calculation speed of the 64-bases-ROM is approx-
imately 120 times that of the FOM, and the calculation
speed of the 10-bases-ROM is approximately 700 times
that of the FOM.

In future research, data assimilation and compressed sensing
methods can be combined to complete the digital twin. In large-
scale sensor networks, compressed sensing is used to reduce the
transmission volume of the sensor nodes. The data assimilation
technology is used to combine the compressed observation data
with model data. Both of the above are finally integrated into a
ROM to predict the system status accurately and efficiently.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03747.

Main equations of the CFD-DEM method (Table S1);
main equations of the TFM method (Table S2) (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Kun Luo − State Key Laboratory of Clean Energy Utilization,
Zhejiang University, Hangzhou 310027, China; Shanghai
Institute for Advanced Study of Zhejiang University, Shanghai
200120, China; orcid.org/0000-0003-3644-9400;
Email: zjulk@zju.edu.cn

Authors
Xiaofei Li − State Key Laboratory of Clean Energy Utilization,

Zhejiang University, Hangzhou 310027, China
Shuai Wang − State Key Laboratory of Clean Energy

Utilization, Zhejiang University, Hangzhou 310027, China

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c03747
Ind. Eng. Chem. Res. 2024, 63, 1634−1648

1647

https://pubs.acs.org/doi/10.1021/acs.iecr.3c03747?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c03747/suppl_file/ie3c03747_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kun+Luo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3644-9400
mailto:zjulk@zju.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaofei+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shuai+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dali+Kong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c03747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Dali Kong − State Key Laboratory of Clean Energy Utilization,
Zhejiang University, Hangzhou 310027, China

Jianren Fan − State Key Laboratory of Clean Energy
Utilization, Zhejiang University, Hangzhou 310027, China;
Shanghai Institute for Advanced Study of Zhejiang University,
Shanghai 200120, China; orcid.org/0000-0002-6332-
6441

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.iecr.3c03747

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The present work was supported by the National Natural
Science Foundation of China (No. 51925603) and the
Fundamental Research Funds for the Central Universities
(No. 2022ZFJH004), which should be sincerely acknowledged.

■ REFERENCES
(1) Basu, P. Circulating Fluidized Bed Boilers: Design, Operation and

Maintenance; Springer International Publishing: Cham, 2015.
(2) Wang, S.; Luo, K.; Hu, C.; et al. Particle-Scale Investigation of
Heat Transfer and Erosion Characteristics in a Three-Dimensional
Circulating Fluidized Bed. Ind. Eng. Chem. Res. 2018, 57 (19), 6774−
6789.
(3) Zhong, W.; Yu, A.; Zhou, G.; et al. CFD simulation of dense
particulate reaction system: Approaches, recent advances and
applications. Chem. Eng. Sci. 2016, 140, 16−43.
(4) Wang, S.; Luo, K.; Hu, C.; et al. CFD-DEM simulation of heat
transfer in fluidized beds: Model verification, validation, and
application. Chem. Eng. Sci. 2019, 197, 280−295.
(5) Wang, S.; Luo, K.; Hu, C.; et al. CFD-DEM study of the effect of
ring baffles on system performance of a full-loop circulating fluidized
bed. Chem. Eng. Sci. 2019, 196, 130−144.
(6) Patil, A. V.; Peters, E. A. J. F.; Kuipers, J. A. M. Comparison of
CFD−DEM heat transfer simulations with infrared/visual measure-
ments. Chem. Eng. J. 2015, 277, 388−401.
(7) Aversano, G.; D’Alessio, G.; Coussement, A.; et al. Combination
of polynomial chaos and Kriging for reduced-order model of reacting
flow applications. Results Eng. 2021, 10, No. 100223.
(8) Sun, L.; Gao, H.; Pan, S.; et al. Surrogate modeling for fluid flows
based on physics-constrained deep learning without simulation data.
Comput. Methods Appl. Mech. Eng. 2020, 361, No. 112732.
(9) Aversano, G.; Bellemans, A.; Li, Z.; et al. Application of reduced-
order models based on PCA & Kriging for the development of digital
twins of reacting flow applications. Comput. Chem. Eng. 2019, 121,
422−441.
(10) Aversano, G.; Ferrarotti, M.; Parente, A. Digital twin of a
combustion furnace operating in flameless conditions: reduced-order
model development from CFD simulations. Proc. Combust. Inst. 2021,
38 (4), 5373−5381.
(11) Li, S.; Duan, G.; Sakai, M. On POD-based modal analysis in
simulations of granular flows. Powder Technol. 2023, 413, No. 118058.
(12) Sun, F.; Su, W. Y.; Wang, M. Y.; et al. RBF-POD reduced-order
modeling of flow field in the curved shock compression inlet. Acta
Astronaut. 2021, 185, 25−36.
(13) Ding, S.; Yang, R. Reduced-order modelling of urban wind
environment and gaseous pollutants dispersion in an urban-scale street
canyon. J. Saf. Sci. Resil. 2021, 2 (4), 238−245.
(14) Zhu, L. T.; Chen, X. Z.; Ouyang, B.; et al. Review of Machine
Learning for Hydrodynamics, Transport, and Reactions in Multiphase
Flows and Reactors. Ind. Eng. Chem. Res. 2022, 61 (28), 9901−9949.
(15) Han, D.; Yu, B.; Yu, G.; et al. Study on a BFC-based POD-
Galerkin ROM for the steady-state heat transfer problem. Int. J. Heat
Mass Transfer 2014, 69, 1−5.

(16) Zhu, L.; Ouyang, B.; Lei, H.; et al. Conventional and data-driven
modeling of filtered drag, heat transfer, and reaction rate in gas-particle
flows. AIChE J. 2021, 67 (8), No. e17299.
(17) Zhu, L.; Tang, J.; Luo, Z. Machine learning to assist filtered two-
fluid model development for dense gas-particle flows.AIChE J. 2020, 66
(6), No. e16973.
(18) Ostrowski, Z.; Białecki, R. A.; Kassab, A. J. Solving inverse heat
conduction problems using trained POD-RBF network inverse method.
Inverse Probl. Sci. Eng. 2008, 16 (1), 39−54.
(19) Chen, X.; Liu, L.; Long, T.; et al. A reduced order
aerothermodynamic modeling framework for hypersonic vehicles
based on surrogate and POD. Chin. J. Aeronaut. 2015, 28 (5), 1328−
1342.
(20) Huayamave, V.; Ceballos, A.; Barriento, C.; et al. RBF-trained
POD-accelerated CFD analysis of wind loads on PV systems. Int. J.
Numer. Methods Heat Fluid Flow 2017, 27 (3), 660−673.
(21) Kadeethum, T.; Ballarin, F.; Choi, Y.; et al. Non-intrusive
reduced order modeling of natural convection in porous media using
convolutional autoencoders: Comparison with linear subspace
techniques. Adv. Water Resour. 2022, 160, No. 104098.
(22) Huang, R.; Mahvi, A.; Odukomaiya, W.; et al. Reduced-order
modeling method for phase-change thermal energy storage heat
exchangers. Energy Convers. Manage. 2022, 263, No. 115692.
(23) Margheri, L.; Sagaut, P. A hybrid anchored-ANOVA-POD/
Kriging method for uncertainty quantification in unsteady high-fidelity
CFD simulations. J. Comput. Phys. 2016, 324, 137−173.
(24) Ahmed, S. E.; Rahman, S. M.; San, O.; et al. Memory embedded
non-intrusive reduced ordermodeling of non-ergodic flows. Phys. Fluids
2019, 31 (12), No. 126602.
(25) Lu, Q.; Wang, L.; Li, L. Efficient uncertainty quantification of
stochastic problems in CFD by combination of compressed sensing and
POD-Kriging. Comput. Methods Appl. Mech. Eng. 2022, 396,
No. 115118.
(26) Lee, W.; Jang, K.; Han, W.; et al. Model order reduction by
proper orthogonal decomposition for a 500 MWe tangentially fired
pulverized coal boiler. Case Stud. Therm. Eng. 2021, 28, No. 101414.
(27) Li, S.; Duan, G.; Sakai, M. Development of a reduced-order
model for large-scale Eulerian−Lagrangian simulations. Adv. Powder
Technol. 2022, 33 (8), No. 103632.
(28) Kong, D.; Wang, S.; Luo, K.; et al. Bubble dynamics and
thermochemical characteristics of bubbling fluidized bed methanation.
Fuel 2023, 338, No. 127292.
(29) Tian, T. Detecting Particle Clusters in Particle-Fluid Systems by
a Density Based Method. Commun. Comput. Phys. 2019, 26 (5), 1617−
1630.
(30) Kong, L.; Xu, J.; Wang, J.; et al. Characterizing Particle Clustering
Behavior in Dense Gas−Solid Suspensions. Ind. Eng. Chem. Res. 2023,
62, 19145−19160.
(31) Lu, L.; Konan, A.; Benyahia, S. Influence of grid resolution, parcel
size and dragmodels on bubbling fluidized bed simulation.Chem. Eng. J.
2017, 326, 627−639.
(32) Li, T.; Dietiker, J. F.; Zhang, Y.; et al. Cartesian grid simulations
of bubbling fluidized beds with a horizontal tube bundle.Chem. Eng. Sci.
2011, 66 (23), 6220−6231.
(33) Laverman, J. A.; Roghair, I.; van Annaland, M. S.; et al.
Investigation into the hydrodynamics of gas−solid fluidized beds using
particle image velocimetry coupled with digital image analysis. Can. J.
Chem. Eng. 2008, 86 (3), 523−535.
(34) Kong, D.; Wang, S.; Luo, K.; et al. Numerical study of biomass
gasification combined with CO2 absorption in a bubbling fluidized bed.
AIChE J. 2023, 69 (8), No. e18096.
(35) Syamlal, M.; O’Brien, T. J. The Derivation of a Drag Coefficient

Formula from Velocity Voidage Correlations; US Department of energy,
Office of Fossil Energy, NETL: Morgantown, WV, 1987.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c03747
Ind. Eng. Chem. Res. 2024, 63, 1634−1648

1648

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jianren+Fan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6332-6441
https://orcid.org/0000-0002-6332-6441
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03747?ref=pdf
https://doi.org/10.1021/acs.iecr.8b00353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.8b00353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.8b00353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ces.2015.09.035
https://doi.org/10.1016/j.ces.2015.09.035
https://doi.org/10.1016/j.ces.2015.09.035
https://doi.org/10.1016/j.ces.2018.12.031
https://doi.org/10.1016/j.ces.2018.12.031
https://doi.org/10.1016/j.ces.2018.12.031
https://doi.org/10.1016/j.ces.2018.10.056
https://doi.org/10.1016/j.ces.2018.10.056
https://doi.org/10.1016/j.ces.2018.10.056
https://doi.org/10.1016/j.cej.2015.04.131
https://doi.org/10.1016/j.cej.2015.04.131
https://doi.org/10.1016/j.cej.2015.04.131
https://doi.org/10.1016/j.rineng.2021.100223
https://doi.org/10.1016/j.rineng.2021.100223
https://doi.org/10.1016/j.rineng.2021.100223
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.compchemeng.2018.09.022
https://doi.org/10.1016/j.compchemeng.2018.09.022
https://doi.org/10.1016/j.compchemeng.2018.09.022
https://doi.org/10.1016/j.proci.2020.06.045
https://doi.org/10.1016/j.proci.2020.06.045
https://doi.org/10.1016/j.proci.2020.06.045
https://doi.org/10.1016/j.powtec.2022.118058
https://doi.org/10.1016/j.powtec.2022.118058
https://doi.org/10.1016/j.actaastro.2021.04.039
https://doi.org/10.1016/j.actaastro.2021.04.039
https://doi.org/10.1016/j.jnlssr.2021.09.001
https://doi.org/10.1016/j.jnlssr.2021.09.001
https://doi.org/10.1016/j.jnlssr.2021.09.001
https://doi.org/10.1021/acs.iecr.2c01036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c01036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c01036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.004
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.004
https://doi.org/10.1002/aic.17299
https://doi.org/10.1002/aic.17299
https://doi.org/10.1002/aic.17299
https://doi.org/10.1002/aic.16973
https://doi.org/10.1002/aic.16973
https://doi.org/10.1080/17415970701198290
https://doi.org/10.1080/17415970701198290
https://doi.org/10.1016/j.cja.2015.06.024
https://doi.org/10.1016/j.cja.2015.06.024
https://doi.org/10.1016/j.cja.2015.06.024
https://doi.org/10.1108/HFF-03-2016-0083
https://doi.org/10.1108/HFF-03-2016-0083
https://doi.org/10.1016/j.advwatres.2021.104098
https://doi.org/10.1016/j.advwatres.2021.104098
https://doi.org/10.1016/j.advwatres.2021.104098
https://doi.org/10.1016/j.advwatres.2021.104098
https://doi.org/10.1016/j.enconman.2022.115692
https://doi.org/10.1016/j.enconman.2022.115692
https://doi.org/10.1016/j.enconman.2022.115692
https://doi.org/10.1016/j.jcp.2016.07.036
https://doi.org/10.1016/j.jcp.2016.07.036
https://doi.org/10.1016/j.jcp.2016.07.036
https://doi.org/10.1063/1.5128374
https://doi.org/10.1063/1.5128374
https://doi.org/10.1016/j.cma.2022.115118
https://doi.org/10.1016/j.cma.2022.115118
https://doi.org/10.1016/j.cma.2022.115118
https://doi.org/10.1016/j.csite.2021.101414
https://doi.org/10.1016/j.csite.2021.101414
https://doi.org/10.1016/j.csite.2021.101414
https://doi.org/10.1016/j.apt.2022.103632
https://doi.org/10.1016/j.apt.2022.103632
https://doi.org/10.1016/j.fuel.2022.127292
https://doi.org/10.1016/j.fuel.2022.127292
https://doi.org/10.4208/cicp.2019.js60.09
https://doi.org/10.4208/cicp.2019.js60.09
https://doi.org/10.1021/acs.iecr.2c04122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.2c04122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cej.2017.06.002
https://doi.org/10.1016/j.cej.2017.06.002
https://doi.org/10.1016/j.ces.2011.08.056
https://doi.org/10.1016/j.ces.2011.08.056
https://doi.org/10.1002/cjce.20054
https://doi.org/10.1002/cjce.20054
https://doi.org/10.1002/aic.18096
https://doi.org/10.1002/aic.18096
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c03747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

