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Abstract: Detecting hydrogen leaks remains a pivotal challenge demanding robust solutions. Among
diverse detection techniques, the fiber-optic method distinguishes itself through unique benefits,
such as its distributed measurement properties. The adoption of hydrogen-sensitive materials coated
on fibers has gained significant traction in research circles, credited to its operational simplicity and
exceptional adaptability across varied conditions. This manuscript offers an exhaustive investigation
into hydrogen-sensitive materials and their incorporation into fiber-optic hydrogen sensors. The
research profoundly analyzes the sensor architectures, performance indicators, and the spectrum of
sensing materials. A detailed understanding of these sensors’ potentials and constraints emerges
through rigorous examination, juxtaposition, and holistic discourse. Furthermore, this analysis judi-
ciously assesses the inherent challenges tied to these systems, simultaneously highlighting potential
pathways for future innovation. By spotlighting the hurdles and opportunities, this paper furnishes a
view on hydrogen sensing technology, particularly related to optical fiber-based applications.

Keywords: hydrogen sensor; optical fiber; sensitive materials

1. Introduction

Hydrogen, with its renewable and potent energy characteristics, presents an appealing
option for clean energy applications. Extensive research has been conducted on its energy
generation, transportation, and storage. However, hydrogen’s safety profile raises concerns,
given its potential for explosion ranging from 4% to 75% in atmospheric conditions [1]. This
safety aspect has restrained its broader adoption in the industrial and transportation sectors.
Furthermore, vigilant monitoring of hydrogen leakage assumes importance because of its
propensity to escape due to its small dimensions and low density, leading to hydrogen
embrittlement. A method for testing hydrogen gas leaks at a distance is required to ensure
the safety of hydrogen use and transportation. Consequently, optical fiber has emerged
as a safer alternative for hydrogen detection based on its extensive use in temperature
monitoring, mechanical engineering, and construction owing to its intrinsic physical and
chemical attributes. Diverse types of optical hydrogen sensors have been developed,
encompassing evanescent optical sensors, surface plasmon resonance (SPR) optical sensors,
micromirror sensors, and fiber Bragg grating (FBG) sensors [2]. A synergistic integration of
these sensor variants holds the potential to enhance their collective detection capabilities.

The traditional optical fiber sensor is an intricate assembly of several components:
a light source, an optical spectrum analyzer, the actual optical fiber, and a coupler. By
attaching a gas-sensitive material to the fiber, reactions with the gas can induce optical
material property change, subsequently altering light properties, such as wavelength or
intensity. By scrutinizing these variations, the concentration of H2 can be measured. This
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method is simple yet efficient, boasting a robust resistance to interference. It enables
detection over considerable distances and is both safe and reliable.

To detect H2 concentration, two independent spectral anchoring mechanisms are em-
ployed. There exist two primary reaction mechanisms upon which mainstream fiber-optic
hydrogen sensors are predominantly based. The first mechanism determines hydrogen
concentration by observing wavelength shifts, such as changes in the wavelength cor-
responding to the center reflection signal of FBG (refer to Figure 1) when hydrogen is
present. Typical sensors utilizing this mechanism include fiber Bragg grating sensors and
interferometric sensors. The second mechanism determines hydrogen concentration by
monitoring changes in light intensity, for example, variations in light intensity reflected
by fiber micromirrors when hydrogen is present. Representative sensors employing this
method include fiber micromirror sensors, fiber plasmonic resonance sensors, and fiber
evanescent field sensors.
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Direct gas testing with fibers or gratings can assess gases like acetylene based on gas
absorption spectroscopy [4]. However, the absorption spectrum of hydrogen is notably
weaker; thus, some hydrogen-sensitive materials are required to aid in testing. Materials
sensitive to hydrogen, such as noble metals and metal oxides, must be attached to fibers for
hydrogen detection. These materials undergo structural changes when reacting with H2
and primarily undergo two distinct typical reactions, with the first being reversible under
anoxic conditions, suitable for concentration and leak detection. The equations describing
the relevant chemical reactions are as follows [5]:

(α)Pd +
k
2

H2 ↔ (β)PdHk (1)

If just detecting gas leakage, the hydrogen-sensitive material acts as a catalyst when it
appears in the atmosphere. The reaction of metal-loaded metal oxides with hydrogen gas
is another principle [6], and the chemical reaction equation is described as follows:

WO3 + xH2
Pt→ WO3−x + xH2O (2)

WO3−x +
1
2

O2
Pt→ WO3 (3)

This article primarily analyzes optical hydrogen sensors based on hydrogen-sensitive
materials from the perspectives of materials and processes. By examining their charac-
teristics, we discern this technology’s prospects and challenges, aiming to enhance its
application effectively.



Sensors 2024, 24, 3146 3 of 24

2. Materials
2.1. Metal Oxide (Metal Attached)

Metal oxide with metal attached is widely used in hydrogen detection, such as Pt-
WO3 [7]. Its performance can be further improved via structural optimization and metal
doping. For example, Yang et al. developed a typical material, mesoporous tungsten
oxide nanoflower. The response exceeded 700 pm (center wavelength offset) per 1% of
hydrogen and had good repeatability [7]. Yan reported nanocrystalline tin oxide thin
films for hydrogen sensing based on an optical fiber evanescent field [8]. Pt-WO3 is
particularly sensitive in gas detection, with a sensitivity of over 1 nm of 1% H2 increase
and an excellent response time of less than 1 min in the experiment [9]. Faster detection
time ensures safety. While these materials have many advantages, some things could be
improved and considered. One of the most obvious is their reusability, as they are not easy
to reuse for high-concentration tests based on the mechanism of hydrogen reaction with
oxygen. Despite this, various microstructures can be created using these metal oxides to
improve their responsiveness and immunity to interference. Moreover, one metal oxide
(e.g., tungsten oxide) can be paired with several noble metals, such as the hydrogen-
sensitive film based on WO3-Pd2Pt-Pt synthesized by Wang in 2019 [10].

2.2. Metal

Metal-based hydrogen sensors differ from metal–metal oxide-based hydrogen sensors.
Their principle lies in the reversible reaction between the metal (such as palladium) and
hydrogen. These sensors offer a wider concentration range for hydrogen measurement [2].
The metal-based film also outperforms metallic oxide on specific parameters, including
response time, which can be less than metal oxide [11]. Composite metal materials or alloy
films, such as PdAu alloy nanocones, are also applied to improve performance and meet
specific requirements [10]. Furthermore, the sensitivity of metal materials is determined by
their thickness, and a suitable thickness ensures the system’s safe and effective operation.
Due to the customizability of metallic elements, there is promising potential for their
enhanced development in the sensor domain in the future.

2.3. Other Materials and Structures

An increasing number of new materials, such as graphene and MOF, are being de-
veloped for hydrogen sensors. These materials can offer improved mechanical properties
or higher specific surface areas for gas diffusion and can be combined with traditional
materials to create multilayer structures for better sensing properties.

Graphene has a substantial specific surface area, superior electrical and thermal con-
ductivity, and outstanding mechanical properties [12]. Graphene or graphene oxide can
serve as an excellent substrate, facilitating better integration with metals such as Pd, thus
maximizing the metal’s ability to bind with hydrogen. Alkhabet developed an optical
sensor based on graphene oxide and metal [13]. By using Pd–graphene oxide (Pd–GO)
nanocomposite as a sensing layer, the research taps into the potential benefits of these
advanced materials for gas detection. The sensitivities and relatively swift response and
recovery times achieved underscore the sensor’s practical utility.

MOFs (metal–organic frameworks) are porous materials of metal ions or clusters
connected by organic ligands. MOFs have a high surface area and tunable pore sizes,
which makes them useful in various applications such as gas storage, separation, and
catalysis. Researchers have also explored the potential of MOFs as hydrogen sensors in
recent years due to their high sensitivity and selectivity towards hydrogen gas. Chen
developed an optical fiber hydrogen sensor based on MOFs, which employs an optical
fiber Mach Zehnder interferometer (MZI) [14]. UiO-66-NH2 (MOFs) is used as a hydrogen-
sensitive film, and its reaction results in corresponding changes in the effective refractive
index and light intensity. These changes are due to the dielectric constant being altered by
the reaction.
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The material’s structure can also influence the gas detection capability, and in some
cases, the structure of specific materials can be tailored to optimize their hydrogen sensing
properties. Multilayer materials can be used for FBG, SPR, or fiber-evanescent field sensors.
Yan has developed a micromirror-based fiber-optic hydrogen sensor with multiple layers of
hydrogen-sensitive material at the end of the fiber [7]. Three layers of hydrogen-sensitive
materials are Pd, WO3, and Au from the outside to the inside. The three materials are
closely arranged and loaded by the sputtering plating method. Tungsten oxide layers are
synthesized due to oxygen during the tungsten spray-coating process, and the surface of Pd
is engraved with grating. Based on the layered material, the sensor is sensitive to hydrogen
detection, has fast response, and has low-temperature characteristics. A wavelength shift
of 28 nm is achieved as hydrogen concentration varies from 0 to 4%.

Some typical microstructures of hydrogen sensors were assessed in a fiber-optical
system, which might be able to enhance the SSA (specific surface area). Du et al. synthesized
material with nanoflower structures based on an in-fiber Mach–Zehnder interferometer
for hydrogen sensing [15]. This material is susceptible, with a sensitivity of more than
1000 pm/% (vol%), and possesses a greater specific surface area for gas contacts. The
Pt-loaded WO3 nanoflowers, when paired with an advanced hydrogen measurement
system (Mach–Zehnder interferometer (MZI) high-sensitivity fiber-optic hydrogen sensor
(with sensing material embedded within the optical fiber), can better demonstrate their
advantages. An electron microscope image of the nanoflowers is shown in Figure 2.
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3. Technical Analysis
3.1. Fiber Bragg Grating (FBG)

In traditional fiber Bragg grating (FBG) sensors, hydrogen concentration is calibrated
by monitoring the central wavelength of reflected light (only a narrow band of light around
the center wavelength is reflected) (Figures 1 and 3). The traditional fiber Bragg grating
(FBG) sensing system is based on central wavelength shift monitoring (Figure 3). This
shift might be more significant when the concentration of hydrogen increases. A schematic
diagram of wavelength shift is shown in Figure 3. FBG hydrogen measurement was first
seen at the end of the last century. FBG is at the core of dimming and hydrogen reactions,
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so the manufacturing process of FBG is also critical. Currently, there are primarily two
methods for fabricating fiber Bragg gratings (FBGs), namely, the ultraviolet (UV) phase
mask technique and femtosecond laser inscription [16]. Traditional FBGs manufactured
using the UV laser phase mask method require the sensitization of the optical fiber and are
unsuitable for high-temperature (around 400 ◦C) applications [17]. In contrast, femtosecond
lasers can inscribe various FBGs on almost all optical fibers. Moreover, FBGs induced by
femtosecond lasers exhibit superior thermal stability, making them well suited for sensing
in harsh environments.
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Sutapun developed a pioneering fiber Bragg grating-based hydrogen sensor in 1999,
serving as a new optical hydrogen detector type [18]. The sensor employs a Pd film,
a hydrogen-sensitive material, applied to the fiber’s surface. The hydrogen content is
detected through deformation caused by hydrogen absorption into the Pd film. This sensor
can monitor and provide alerts for hydrogen gas concentrations in the 0.3–1.8% range. This
sensor formed the prototype of the current traditional FBG hydrogen measurement, and
most subsequent FBG hydrogen measurement sensors have been based on this design.

Caucheteur developed a hydrogen-sensitive material based on metal oxides, and
this type of hydrogen-sensitive material and hydrogen reaction requires the participation
of precious metals (Pd, Pt, Ag, etc.) and metal materials as reactant in the reaction [19].
Because of its unique wavelength regulation mechanism, FBG can be used with other
fiber-optic sensors to achieve a better sensing effect. In addition, the series of different FBGs
can also reduce the influence of temperature on the sensor.

Ma developed an FBG-based hydrogen detection device with a thick Pd film as the
hydrogen-sensitive material and added polyimide to improve stability to detect hydrogen
in transformer oil [20]. The wavelength shift of the FBG sensor is proportional to the hy-
drogen concentration in transformer oil, and this sensitivity is not affected by temperature.
This sensor effectively reduces interference and offers the advantages of fast detection,
localization, and real-time monitoring.

In some cases, FBG sensors can also be designed to measure changes in light intensity,
such as in the tilted FBG hydrogen sensor developed by Zhang [20]. This sensor uses a
nanocomposite film made of Pd and Au as the sensing material, which reacts to changes in
hydrogen concentration by altering the intensity of transmitted light. The sensor’s output
is then measured using a spectrometer, and a hydrogen concentration–light intensity curve
is plotted based on the changes observed. According to data analysis, the sensor showed a
high sensitivity of 1.597 dB% (the light intensity in the transmission spectra increased from
−11.3068 dB to −10.1788 dB as the hydrogen concentration rose from 0.00% to 1.02%), with
an average response time of 37 s and an average recovery time of 49 s.
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3.2. Interferometric Hydrogen Measurement

Most fiber-optic hydrogen sensors utilize the principle of light interference within the
fiber using equipment such as the Mach–Zehnder and Fabry–Perot interferometers, among
others [21]. These sensors are based on optical path differences (Figure 4) and have two
parallel optical paths, one coated with a hydrogen-sensitive material and the other uncoated.
When hydrogen reacts with the hydrogen-sensitive material, it causes a difference in the
optical path. This difference leads to light interference at the end of the fiber, resulting
in a spectrogram with distinct peaks or valleys of light intensity at specific wavelengths
(central wavelength). As the concentration of hydrogen changes, the central wavelength
shifts, like hydrogen testing based on fiber Bragg gratings, with the concentration of
hydrogen corresponding to the wavelength shift (∆λ). Generally, interferometric sensors
are divided into Fabry–Perot and Mach–Zehnder (MZI) interference, depending on the
response mechanism. This interference mode may be used with fiber Bragg gratings to
exploit both mechanisms’ advantages fully.
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3.2.1. Mach–Zehnder Interferometer (MZI)

In 1984, Butler introduced a hydrogen sensor using a Pd film on an optical fiber for
hydrogen testing [22]. This sensor was based on the Mach–Zehnder interference principle,
one of the earliest fiber-optic methods for hydrogen detection.

Nowadays, MZI sensors show a high sensitivity and a wide dynamic range. The
sensor can be prepared using a single optical fiber instead of the traditional double optical
fiber. Gu et al. developed a hydrogen sensor based on MZI using PdAu nanowires as the
hydrogen-sensitive material [23]. To address the weak mechanical stability of pure Pd,
this study utilized the PdAu nanowires to enhance the strength of the hydrogen-sensitive
material. The hydrogen-sensitive material was loaded onto the test fiber while the reference
fiber remained unloaded, creating an optical range difference to produce an interference
spectrum under hydrogen intervention. The troughs of the spectra shifted at different
hydrogen concentrations, allowing for the calibration of hydrogen concentrations. The
device exhibits reversibility and low energy consumption. The principal diagram of this
H2 sensor is shown in (Figure 5).

MZI interference can also be achieved with a single fiber by changing the structure
of the fiber. Du developed a susceptible single fiber-based MZI hydrogen sensor using a
graded-index fiber (GIF) to test for hydrogen [15]. A cavity filled with polymer is formed
by intervening with a laser, creating two optical paths—one each for the GIF and the
hole. The entire region is wrapped with hydrogen-sensitive material (Pt-loaded WO3),
and the two internal rays can interfere with each other when hydrogen is involved. This
MZI-based hydrogen sensor boasts a sensitivity of 1948.68 nm/% (vol% hydrogen) at
hydrogen concentrations close to 0.8%. The sensor is highly responsive and can detect low
concentrations of hydrogen, making it a valuable tool for gas-sensing applications.
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3.2.2. Fabry–Perot Interferometer (FPI)

In 1994, Zeakes developed a hydrogen sensing system based on the Fabry–Perot inter-
ferometer (FPI) [24]. A sputter-coated Pd film serves as the hydrogen-sensitive material
for the optical fibers. This configuration utilizes two optical paths (one affected by the
hydrogen-sensitive material) in the same fiber, leading to interference. The visual range
of one of the paths changes when hydrogen is present. An extrinsic Fabry–Perot inter-
ferometric sensor was used for hydrogen testing, and its configuration effectively avoids
polarization issues and monitors a single axial strain. This interference-based method of
measuring hydrogen is more sensitive, and the lower detection limit is predicted to reach
32 ppm.

Fiber-optic hydrogen measurement systems with multiple micromirrors in series are
an advanced technology that typically incorporates light interference. A multimicromirror
hydrogen measurement system was developed [25] with a fiber tail consisting of a section
of large-mode-area fiber (LMAF) and a section of hollow core fiber (HCF) (Figure 6), with
the end coated with a hydrogen-sensitive material. The hydrogen-sensitive material on
the back is Pt-doped WO3/SiO2 powder for hydrogen reaction. This system achieved a
sensitivity of 1.04 nm/% for hydrogen in the range of 0.3–2.4%, with a response time of
only 80 s.

Lee proposed a double-C structure in 2018 that exhibits excellent performance as a
combination of micromirrors and Fabry interference [26]. The most striking feature is its
structural design, which consists of a cavity at one end of the fiber (double-C structure),
with the inner C cavity forming a microcavity Fabry–Perot interferometer (FPI) and the
outer C cavity with an embedded Pt-loaded WO3/SiO2 powder as the hydrogen-sensitive
region. There are some complicated metallic WO3/SiO2 systems with Pt loaded as H2
sensor, with only 30 s response time and 17.5 nm/% H2 sensitivity that have shown good
performance in H2 sensing. Moreover, an FBG can be combined with this structure to test
the temperature and achieve versatility.
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3.3. MultiFBG Test System

A dual-FBG system can effectively harness the modulation capability of FBGs. By
employing two FBGs with different central wavelengths in a hydrogen sensing setup,
often coupled with fiber micro-lenses, the relative intensities of light from these FBGs can
accurately indicate the concentration of hydrogen gas [9].

Dai developed a micromirror hydrogen sensor that employs two sets of Bragg grat-
ings on an optical fiber, with one set of high-reflectivity gratings and another set of low-
reflectivity gratings [27]. The hydrogen-sensitive films attached to the fiber’s end comprise
three layers: 10 nm Pt, 20 nm Pd2Pt, and 200 nm tungsten oxide. Hydrogen does not sig-
nificantly affect the high-reflectivity gratings, whereas the low reflectivity gratings exhibit
a more noticeable change in reflectivity. The light intensity ratio (I1/I2) of the two FBGs
provides effective calibration of the hydrogen concentration and minimizes interference
from humidity. Moreover, this sensor is sensitive and can monitor gases down to 10 ppm.

These techniques can be upgraded for additional testing environments, such as adding
heating equipment. Wang developed a fiber-optic hydrogen sensor based on a dual FBG
with a hydrogen-sensitive film and a heating device [10]. The unique heating system (PID
algorithm to control the output power) can ensure uniform and controllable temperature,
with the hydrogen-sensitive material comprising 150 nm WO3, 40 nm Pd2Pt, and 5 nm Pt.
The increase in I1/I2 indicates an increase in hydrogen concentration, which can be cali-
brated as a function of the data. Furthermore, the heating system can reduce the influence
of ambient temperature fluctuations, leading to the stability of the hydrogen sensor.

3.4. FBG with FPI

The FBG (fiber Bragg grating) exhibits a high reflectivity for specific wavelengths,
acting somewhat like a selective mirror for certain wavelengths. Therefore, any variations
in the intensity of the reflected light or the utilization of FBG for optical interference are
particularly pronounced [10]. This has led to the development of hydrogen sensors that
combine both FBG and FPI (Fabry–Perot interferometer).

Luo’s fiber-optic hydrogen sensor is a highly advanced design incorporating a fiber
Bragg grating with a micromirror to create a superior hydrogen sensor [5]. The Bragg
grating is inscribed in the middle of the fiber, while the end of the fiber is coated with
a hydrogen-sensitive material, specifically Au–Pd–graphene. To enhance the sensor’s
performance, it uses a short hollow-cavity length and a slit end on the hollow-core fiber to
reduce dispersion loss and insertion loss effectively. In addition, the end of the hollow-core
fiber is loaded with a multilayer hydrogen-sensitive material, making it even more sensitive.
This design produces a central wavelength shift of 290 pm (near the central wavelength of
1550 nm) when the hydrogen concentration is 1.5–4.5%, indicating a susceptible hydrogen
sensor that can detect low levels of hydrogen in each environment [5].

3.5. Mirror H2 Sensor

A mirror fiber-optic hydrogen sensor effectively measures hydrogen concentration
through a change in intensity at a typical wavelength [28]. Unlike a fiber Bragg grating, the
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hydrogen-sensitive material film is located at the end of the fiber. As the film reacts with
hydrogen, it undergoes changes that effectively alter the refractive index of the system,
leading to a shift in the intensity of the reflected light. The change in reflectivity allows
for calibration of the hydrogen concentration. The film’s selection and attachment method
are crucial to achieving a response to hydrogen, and the strength and toughness of these
materials must be considered during design. A schematic diagram of the mirror H2 sensor
is shown in Figure 7. It is important to note that the sensor’s performance is highly
dependent on the hydrogen-sensitive film’s quality and consistency and the attachment
method’s stability.
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Butler developed a micromirror-based fiber-optic sensor in 1993 to test higher hydro-
gen gas concentrations [29]. The sensor utilized a 10 nm-thin Pd film as the hydrogen-
sensitive material and tested hydrogen concentrations of up to 10% in nitrogen.

In 2000, Bevenot developed a fiber-optic sensor to detect hydrogen leaks in the cryo-
genic engines of European rockets [30]. This sensor used a commercial multimode fiber-
HCN H type (diameter 400 µm) with the sensing area coated on the bottom of the fiber with
a Pd film. The Pd film can be efficiently heated using high-power laser heating, enabling
hydrogen testing in the temperature range of −196 ◦C to +23 ◦C. The sensor has a hydrogen
detection range of 1% to 17% and a response time of less than 5 s.

However, this sensor was susceptible to interference from intensity fluctuations in
the optical sensing system, so Dai reported a hydrogen sensor based on a micromirror
sensor with improvements [31]. The hydrogen-sensitive material used in this sensor was
WO3–Pd2Pt–Pt nanocomposite film (Figure 8). The reflected mechanism was based on
the ratio of light intensity (I1/I2) to calibrate the hydrogen concentration, with reference
intensity (I1) and sensing intensity (I2), where the fluctuation of I1 and I2 was also lower.
The sensor had a fast response time of around 20 s when the hydrogen concentration was
1000 ppm, and at that time, the response value I1/I2 was 0.38 (0.45 when there was no
hydrogen). The sensor had good resolution at 100–5000 ppm and showed promise for
future use.
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3.6. Surface Plasmon Resonance (SPR) Sensor

An optical fiber surface plasmon resonance sensor is also a standard hydrogen sensor
based on changing light flux to sense hydrogen concentration [32]. Fiber-optic plasma
resonance refers to the resonance between the vanishing wave and the plasma wave
under the intervention of the outside world, resulting in the absorption of the energy of
the incident light; that is, the intensity of the transmitted light becomes weak (Figure 9).
This technology was first applied to gas sensing in 1982, laying the foundation for future
developments [33].
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Benson’s work in 1999 successfully detected hydrogen at an explosive concentration of
4% using the SPR process [34]. Tungsten oxide was used as the hydrogen-sensitive material
for optical fibers, and Pd was used as a catalyst for WO3 to accelerate the reaction. The
decay in reflected energy was used to calibrate the hydrogen concentration. This study
succeeded in fiber-optics, chemical color change, and hydrogen detection. However, this
sensor may produce erroneous results when water vapor is present.
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Ohodnicki developed an SPR-based fiber-optic hydrogen sensor that can detect hy-
drogen concentrations between 1% and 100%, giving it the advantage of testing high
concentrations of hydrogen [35]. This principle can be used to test hydrogen at higher
concentrations, up to 20% in the infrared band, above the detection limit of traditional FBG.

In addition, the region of surface plasmon resonance can be located at the tail end of
the fiber, and the light intensity can be used to detect hydrogen. Kim proposed a surface
plasmon resonance hydrogen sensor in which the hydrogen-sensitive material is Pd-plated
gold nanoparticles [36]. The composite sensitive film is deposited on the tail end of the
fiber using a layer assembly method, where the gold particles are coated with a Pd layer
on the surface. The sensor has a response time of 116 s in the 0.8–4% range, and the lower
detection limit can be as low as 0.086%. The sensor is also reusable.

3.7. Optical Fiber Evanescent

An optical fiber evanescent field-based hydrogen sensor is a reliable method for
detecting hydrogen concentration based on changes in light intensity. This sensing method
relies on the fact that some light energy is lost through the fading field, which can be used
to control the intensity of the projected light (transmittance). At the same time, this sensor
is like the SPR sensor (Figure 10), but the reaction mechanism is slightly different. In an
SPR sensor, the light transmission is weakened due to resonance, whereas in the evanescent
field-based sensor, the diluted energy loss is due to the evanescent field.
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Tabib-Azar (1998) successfully operated a fiber-connected MEMS pressure sensor
using a fiber-evanescent field in the 0–20 psi pressure range [37]. In the same year, they
also developed a gas sensor based on the evanescent field of optical fibers [38]. It could
detect hydrogen concentrations between 0.2% and 0.6% with a 100 nm-thick Pd layer and a
20- to 30-s response time. Low temperatures did not affect the sensor response, and the
response time was only doubled at −10 ◦C.

However, there is still room for improvement in hydrogen measurement using the
evanescent field of optical fibers, and the use of D-type optical fibers may help address
this issue. Cao reported a temporary field hydrogen sensor based on D-type optical
fibers with Pd alloy as the hydrogen-sensitive material [11]. In this sensor, the change
in luminous flux (light intensity) due to hydrogen reacting with the hydrogen-sensitive
material is recorded as the change in I/I0. I represents the light intensity with hydrogen,
and I0 represents the intensity without hydrogen. The addition of the alloy effectively
reduces the influence of PdHx phase transformation and improves the response speed.
Moreover, adding nanostructures further enhances the response effect. This sensor can
detect hydrogen concentrations from 0.25% to 10% at atmospheric pressure with a response
time of 30 s at a 4% volume concentration of hydrogen.
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3.8. Sensor Structure

Of course, many other structures are used for optical hydrogen gas monitoring. While
these structures operate on principles like fiber-optic hydrogen sensors, their unique designs
might enhance performance.

3.8.1. Structure of Fiber Sensor

In gas detection, the specific surface area is a crucial parameter that benefits the gas
reaction. In addition to the porous structure of the sensing material, the unique structure of
the optical fiber can also be used to improve the contact area. For instance, Zhou developed
a single spiral and a double spiral on the cladding of the FBG area via laser engraving [39].
The hydrogen-sensitive material can be attached to the fiber’s surface. Some of it goes into
the groove, effectively increasing the contact area and making it easier for the hydrogen-
sensitive material to react with hydrogen. This device achieved an extensive test range
and fast response time. Humidity resistance was also improved, effectively improving
hydrogen-testing capabilities, as shown in Figure 11.
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Figure 11. Schematic diagram of fiber spiral microstructure (single spiral and double) hydro-
gen sensor [39]. (A) Laser grooving process and double spiral. (B) Single spiral microstructure.
(C) Hydrogen response (change in central reflection wavelength) under different hydrogen concen-
trations. (D) Hydrogen response with different moisture content. Note: The blue in (A) is the pulse
laser, the red is the fiber core, and the dotted line is the fiber centerline.

In addition to laser engraving, pre-polishing the fiber and grinding micro-grooves
along the direction of the fiber on the cladding can also improve performance. Due to
grooves, there are multiple symmetrical inward gaps in the cutting surface of the optical
fiber, and these gaps can be coated with sensing materials. Karanja took advantage of this
structure and used silver as a hydrogen-sensitive material, resulting in a system with good
repeatability [40]. Zhou developed a new spiral structure of optical fiber combined with
various nanomaterials, which reacted quickly within several seconds with 0.02% and 4%
hydrogen flowing into the gas chamber [41].

Hollow fiber is another fiber that can be used for hydrogen testing. Liu developed a
new type of fiber with hydrogen-sensitive material inside a hollow fiber, calibrated accord-
ing to the central wavelength shift [42]. EVA–Pd coating HF is fabricated by sequentially
depositing Pd and EVA films on the inner surface of quartz capillaries while controlling the
solution’s deposition time, flow rate, and temperature to prepare a uniform coating. This
configuration resulted in a protected sensing film and an average sensitivity of 2.66 nm/%
over the 0–4% hydrogen concentration range.
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Some structures can be synthesized and doped with hydrogen-sensitive materials
during synthesis. Guo developed a synthetic composite porous optical fiber of silica-doped
Pd synthesized by the sol–gel method [41]. The integrated synthesis process results in a
considerable improvement in sensitivity, with the sensor being reversible for hydrogen
testing and capable of monitoring hydrogen at 1% concentration.

3.8.2. Cantilever Sensor

Hydrogen sensors based on cantilever structures have gained considerable attention in
recent years. One such structure is the catch-and-release cantilever structure, which is like
the micromirror structure. In 2020, Xiong designed a combined fiber-optic and mechanical
cantilever hydrogen measurement system, which utilizes a micro-cantilever loaded with
a Pd film for hydrogen monitoring [43]. The hydrogen-sensitive micro-cantilever was
synthesized using femtosecond laser-induced two-photon polymerization (TPP), and the
surface was coated with a Pd film using magnetron sputtering, as shown in Figure 12. The
reaction of the Pd film on the microcantilever with hydrogen produces a deformation that
drives the entire microcantilever to bend, thus changing the central wavelength of the
reflected spectrum of the system. This sensor exhibits a strong response, with a sensitivity
of 2 nm/% hydrogen, as the hydrogen concentration ranges from 0 to 4.5%, and it has
a response time of about 13.5 s at 4% (v/v). The hydrogen-sensitive micro-cantilever’s
innovative design and synthesis process provide a promising platform for developing
high-performance hydrogen sensors.
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Figure 12. Experimental setup of a cantilever hydrogen sensor [43]. The lower charts show the
expansion of the Pd film, causing the test cantilever to bend and return to its original position. Note:
The orange-red arrows in the upper part are signals, the brown-green arrows are gases; the green and
brown dots and arrows in the lower part are gases and direction, and the red arrows are changes in
the sensor head.

3.8.3. Multiple-Layer Film Sensor

Yi Liu developed a hydrogen gas sensor based on a series of connections of multiple
thin hydrogen-sensitive films. Light passes through all the parallel films via a collima-
tor [44]. When used as a material for hydrogen gas, the multilayer thin Pd–Y alloy film can
effectively alter the light’s transmittance in the presence of hydrogen gas, as demonstrated
by the reaction mechanism. The gas-sensitive films were prepared using physical vapor
deposition (PVD) and sputter-coating to deposit hydrogen-sensitive materials onto quartz
films. Experimental results indicated that the response time of the hydrogen gas sensor
gradually decreases as the hydrogen concentration increases, with the change being nonlin-
ear. The sensor’s shortest response time at a concentration of 4% is approximately 4 s, and
the lower detection limit is 0.05%. The schematic diagram and the response curve are shown
in Figure 13. Despite their outstanding performance, sensors of this type are cumbersome.
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4. Sensor Fabrication

Choosing and applying effective hydrogen sensing materials are pivotal for accurate
measurements for optical fiber hydrogen sensing systems. Several techniques exist to
use these materials in grating, including traditional deposition, spray-coating, chemical
vapor deposition (CVD), and metal sputtering. Of these methods, metal sputtering stands
out as the favored approach for affixing metal-based materials. Feng pioneered an FBG
hydrogen sensor with a sputter-coating technique with Pd–Ni. This method generates free
atoms through collisions with external entities like AR ions [45]. To achieve a consistent
distribution of the hydrogen-sensitive material across the grating, rotating or spraying the
optical fiber from various angles during the coating process is essential.

In addition to metal sputter, other methods, such as sticking metal foil directly onto the
optical fiber’s surface, can also load metal materials. Fisser developed a simple method for
loading Pd foil as a hydrogen-sensitive material, achieving good performance and excellent
sensing performance at a thickness of 20 microns [46]. Experimental data suggested
that the Pd foil-type hydrogen-sensitive material sensor performs better than traditional
sputter-method sensors of the same thickness. The response wavelength of the Pd foil
hydrogen-sensitive material is 0.5 nm compared to the response wavelength of splash-
wrapped material of 0.25 nm [46].

Traditional deposition methods can also load hydrogen-sensitive materials onto optical
fibers. Ma designed a loading method for hydrogen-sensitive materials using a plating
solution of metal hydrogen-sensitive materials as raw material [42]. This method allows
for the loading of organic matter or even multilayer hydrogen-sensitive material, such as
Pd/EVA hydrogen-sensitive material.

Deposition is an effective way to load hydrogen-sensitive materials framed by metal
oxides onto optical fibers in the grating region. Ma developed a micromirror fiber-optic
hydrogen sensor using a Pd-decorated multilayer graphene (MLG) hydrogen-sensitive
material, where the loading of the MLG method is dipping [47]. The MLG thin layer is
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specially treated to float on the surface of deionized water, and the tip of the fiber is dipped
into the floating layer, forming a hydrogen sensing layer on the tip of the fiber. This method
achieved a lower detection limit of about 20 ppm and a short response time of about 18 s
using a hybrid film of about 5.6 nm-thick Pd and about 3 nm-thick MLG.

Nugroho pioneered an innovative material-loading technique using a metallic alloy
synthesized via high-temperature annealing on a planar substrate [48]. Initially, metallic
chromium was layered onto the substrate, complemented by a carbon film. This was
succeeded by introducing a Pd–Au alloy nanodisk array via hole–mask colloidal lithog-
raphy (HCL). Calcination was employed to remove organic materials, after which the
chromium was eradicated using an etching solution. This process facilitated the floating
of the alloy and carbon film on water. Employing an optical fiber, the carbon film and
alloy were captured and adhered to the fiber’s surface. Subsequently, removing the carbon
film ensured exclusive alloy adherence to the fiber. The detailed preparation sequence is
illustrated in Figure 14.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 24 
 

 

Deposition is an effective way to load hydrogen-sensitive materials framed by metal 
oxides onto optical fibers in the grating region. Ma developed a micromirror fiber-optic 
hydrogen sensor using a Pd-decorated multilayer graphene (MLG) hydrogen-sensitive 
material, where the loading of the MLG method is dipping [47]. The MLG thin layer is 
specially treated to float on the surface of deionized water, and the tip of the fiber is dipped 
into the floating layer, forming a hydrogen sensing layer on the tip of the fiber. This 
method achieved a lower detection limit of about 20 ppm and a short response time of 
about 18 s using a hybrid film of about 5.6 nm-thick Pd and about 3 nm-thick MLG. 

Nugroho pioneered an innovative material-loading technique using a metallic alloy 
synthesized via high-temperature annealing on a planar substrate [48]. Initially, metallic 
chromium was layered onto the substrate, complemented by a carbon film. This was suc-
ceeded by introducing a Pd–Au alloy nanodisk array via hole–mask colloidal lithography 
(HCL). Calcination was employed to remove organic materials, after which the chromium 
was eradicated using an etching solution. This process facilitated the floating of the alloy 
and carbon film on water. Employing an optical fiber, the carbon film and alloy were cap-
tured and adhered to the fiber’s surface. Subsequently, removing the carbon film ensured 
exclusive alloy adherence to the fiber. The detailed preparation sequence is illustrated in 
Figure 14. 

An effective means for producing synthetic materials, 3D printing will also be widely 
used in manufacturing optical sensors, leveraging the advantages of additive manufactur-
ing. Iwan Darmadi proposed utilizing 3D-printing techniques (Figure 15) to fabricate hy-
drogen-sensitive materials [49]. The printing method used is FDM 3D printing (fused dep-
osition modeling), which can integrally produce sensors where polymers and metal ele-
ments are organically combined. The sensor not only has a rapid response to hydrogen 
gas, but its specificity for hydrogen gas has also greatly improved, effectively reducing 
the influence of other gases such as carbon monoxide. Utilizing various nanocomposite 
materials for multilayered FDM 3D printing can facilitate the on-site fabrication of cus-
tomized sensor units with diverse functionalities. 

 
Figure 14. Schematic of the fiber-optic hydrogen sensor preparation using Pd–Au as the hydrogen-
sensitive material [48]. (a) Sequential growth of the Cr and C layers, followed by the nanofabrication 
of Pd–Au alloy nanodisk arrays. (b) Optical fiber material loading process: begin by removing the 
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Figure 14. Schematic of the fiber-optic hydrogen sensor preparation using Pd–Au as the hydrogen-
sensitive material [48]. (a) Sequential growth of the Cr and C layers, followed by the nanofabrication
of Pd–Au alloy nanodisk arrays. (b) Optical fiber material loading process: begin by removing the
organic and Cr layers. Later, allow the nanoparticle-infused C layer to float on the water’s surface.
Harnessing the hydrophobic properties of the C layer ensures its adherence to the optical fiber surface.
Conclude the process by eliminating the C layer.

An effective means for producing synthetic materials, 3D printing will also be widely
used in manufacturing optical sensors, leveraging the advantages of additive manufac-
turing. Iwan Darmadi proposed utilizing 3D-printing techniques (Figure 15) to fabricate
hydrogen-sensitive materials [49]. The printing method used is FDM 3D printing (fused
deposition modeling), which can integrally produce sensors where polymers and metal
elements are organically combined. The sensor not only has a rapid response to hydrogen
gas, but its specificity for hydrogen gas has also greatly improved, effectively reducing the
influence of other gases such as carbon monoxide. Utilizing various nanocomposite materi-
als for multilayered FDM 3D printing can facilitate the on-site fabrication of customized
sensor units with diverse functionalities.
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5. Specific Environmental Hydrogen Measurement
5.1. Temperature Reference

Temperature is also a critical interference factor based on the fiber-optic hydrogen
measurement principle (Figure 1). The most popular current method is to connect an empty
grating in series to balance the temperature. This grating is called a reference grating. When
the test grating and the reference grating are in the same environment, the response value
of the test grating minus the response value of the reference grating is the response caused
by pure hydrogen.

Based on this principle, Yan synthesized a hydrogen sensor in 2011 that can effectively
offset the effect of temperature [50]. Pt–WO3 is loaded on the side face of side-polished fiber
Bragg grating through magnetic sputtering technology and serves as a hydrogen sensor.
Moreover, the relative wavelength is obtained by subtracting the center wavelength of the
reference fiber grating from the center wavelength of the sensing fiber grating, which can
improve the accuracy of the sensor by reducing the influence of ambient temperature. The
sensor recorded peak central wavelength shifts of 25 and 55 pm at 4% and 8% hydrogen
concentrations, respectively.

In 2017, Xiang developed a heated FBG hydrogen sensor with improved stability,
sensitivity, and response speed during hydrogen exposure [45]. Figure 16 shows a schematic
diagram of the heated FBG hydrogen sensor. Introducing a heating system can enhance the
sensor’s sensitivity to hydrogen. Overall, these advancements in temperature control and
hydrogen sensing have led to more accurate and practical hydrogen measurement systems.
A novel hydrogen sensor with inherent temperature compensation and a controllable
optical heating system, this sensor holds excellent promise for hydrogen concentration
detection in oxygen-free environments.
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5.2. Special Environment Test

In practical testing scenarios, hydrogen measurement systems may encounter other
gases, such as water vapor or hydrocarbons, which can interfere with the accuracy of
measurements. However, there are effective methods to mitigate the interference of these
gases, such as adding a filter layer or enhancing the material’s performance.

High selectivity is currently a reliable approach, emphasizing specificity towards
hydrogen to reduce or eliminate the influence of other gases, especially in mixed-gas
environments. Elena developed a fiber-optic hydrogen sensor that operates based on
changes in light intensity like surface plasmon resonance (SPR). The sensor demonstrates
excellent optical performance and notable specificity [51]. The sensor is founded on a gold-
coated multimode optical fiber, leveraging its plasmonic properties, and is adorned with an
IRMOF-20 layer known for its high selectivity and affinity to hydrogen. The sensor exhibits
an exceptionally high response to hydrogen and boasts robust selectivity. Furthermore, it
remains insensitive to humidity. The sensor’s absorption spectrum remains predominantly
stable when exposed to gases like carbon dioxide and nitrogen dioxide. Moreover, when
hydrogen is combined with these gases, the sensor’s response profile closely mirrors that
observed for hydrogen in ambient air. Spectral graphs in the presence of interfering gases
are shown in Figure 17.
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Figure 17. (A) Monitoring of 6% hydrogen amidst 20% NO2. (B) Measurement of 6% hydrogen with
20% CO2 present [51].

One approach involves using a zeolite filter membrane in fiber-optic hydrogen mea-
surement systems, significantly enhancing the system’s resistance to interference. Sun
developed a multilayer hydrogen-sensitive material involving zeolite [52]. The sensing film
comprises Pd–silica (Pd–SiO2), while an NaA zeolite membrane serves as a filtering layer
to sieve out interfering gases [52] (Figure 18). This zeolite membrane effectively screens out
interferences like carbon monoxide (CO) [52]. Results indicate that the zeolite membrane
notably mitigates the impact of carbon monoxide through its reactive properties (Figure 18).
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Figure 18. Zeolite filter and Pd-based sensing film optic hydrogen sensors [52]. (A) Schematic
diagram of the hydrogen gas sensor. (B) Response of the hydrogen gas sensor to single gases and gas
mixtures (without zeolite membrane). (C) Response of the hydrogen gas sensor to single gases and
gas mixtures (with zeolite membrane). Note: The curves in (B,C) represent the transmission, and the
histogram represents the gas concentration. (B,C) show that only in the presence of hydrogen, the
transmission will change significantly.

This type of sensor uses multiple layers of hydrogen-sensitive film structures made
from diverse materials to accommodate complex test environments. Westerwald proposed
a multilayer film-based fiber-optic hydrogen sensor, in which the hydrogen sensing region
located at the end of the fiber is set up with a multilayer film [53]. The sensor probe is a
multilayer structure of polytetrafluoroethylene (PTFE), a Pd–Au sensing layer, and a Ti
adhesion layer, which are attached to a multimode fiber. The PTFE film is on the outermost
layer and is used to counteract the effects of water vapor, while the titanium layer ensures
the mechanical stability of the structure. The sensor is susceptible, with response and
recovery times of less than 15 s. The sensor’s response to water vapor (up to 2%) and
methane (up to 5%) to hydrogen is unaffected.

Fiber-optic hydrogen sensors can effectively address various issues related to remote
hydrogen telemetry in real-world environments. Once these issues are resolved, such
sensors might replace existing leak detection tools in areas like hydrogen refueling stations,
transformer oils, and nuclear power plants.

6. Challenges
6.1. Limit of Detection (LOD)

The sensitivity of hydrogen sensors is a critical parameter that determines their effec-
tiveness in ensuring safety. However, a significant challenge facing most hydrogen sensors
is their high lower limit of detection (LOD), sometimes near 0.5% [54]. This high LOD
makes it challenging to use these sensors in critical areas requiring more sensitive detection
capabilities. To address this limitation, researchers have focused on developing new hy-
drogen sensors with improved sensitivity, especially those that can detect lower hydrogen
concentrations with high accuracy [54]. The performance of some optical hydrogen sensors
is listed in Table 1.

On the other hand, the upper limit of detection is another significant challenge that
needs to be addressed. Oxygen in the reaction mechanism, especially in sensors that use
metal oxides as the hydrogen-sensitive material, makes it challenging to test hydrogen con-
centrations above 4% [1]. In contrast, sensors that use precious metals as hydrogen-sensitive
material can detect hydrogen concentrations above 4%, but the concentration–wavelength
curve becomes almost horizontal at concentrations above 8% [55]. Furthermore, some opti-
cal fiber sensors that rely on light flux to detect hydrogen can detect high concentrations of



Sensors 2024, 24, 3146 19 of 24

hydrogen. However, their hydrogen–transmittance curve becomes almost flat at higher
hydrogen concentrations, which limits their usefulness in applications that require the
detection of very high hydrogen concentrations. The upper limit of detection for fiber-optic
hydrogen sensors should also be appropriately increased.

Table 1. Comparison of fiber hydrogen sensor.

Type Sensitive Material Concentration Range Response Time Reference

FBG Pt–WO3 0.04–4% 10~20 s [39]
FBG Pd 1–5% 0.4 h [46]
FBG Pd/Ag 1–4% 300 s [40]
FBG (K/S/C)-Pt/WO3 0.04–1.5% 50 s [14]
FBG Pd 0.5–10% 10 s [55]

Evanescent SO2 0.02–10% 10 s [8]
Evanescent Pd/Au 0.8–4.6% 4.5 s [56]
Evanescent MoO3 0.125–2% 220 s [57]

SPR Pd/SiO2/Au 0.5–4% 15 s [54]
SPR Pd 0.08–4% 116 s [36]
MZI Pd–Au alloy 0.5–20% 200 s [23]
MZI Pt–WO3 0.1–0.8% 35 s [15]
FPI Pt–WO3/SO2 0.3–2.4% 50 s [25]
FPI Pt–WO3/SO2 0.2–0.8% 23 s [26]

Micromirror WO3–Pd2Pt–Pt 0.01–0.5% 20 s [31]
Micromirror WO3–Pd2Pt–Pt 0.000228–0.2% 200 s [10]

6.2. Adsorption and Resolution Time

In critical areas, it is crucial to have hydrogen sensors that can respond rapidly to
identify potential risks and enable swift action. Recovery time is also essential, as shorter
recovery times can enhance the material’s performance and facilitate reuse. However,
balancing response and recovery time remains challenging for many hydrogen sensors,
limiting their development. Therefore, it is essential to continue researching and developing
hydrogen sensors that can respond quickly and recover rapidly without compromising
their accuracy and reliability. Such sensors would significantly improve safety in critical
areas by enabling timely identification of risks and quick decision-making.

7. Conclusions and Outlook
7.1. Conclusions

Over the last few years, several reports of thin film-based optical hydrogen sensors
have been reported. Metal-loaded metal oxide and metal materials continue to be the
primary choices for hydrogen-sensitive membranes. The metal selection is primarily based
on Pd. In summary, the current trend combines various types of hydrogen-sensitive ma-
terials. The types of optical hydrogen sensors mainly include surface plasmon resonance
(SPR), fiber Bragg grating (FBG), interference, evanescent field, micromirror, and more.
The characteristics of these traditional measurement methods have been discussed, and
some advanced measurement methods are also mentioned. Meanwhile, these advanced
techniques alleviate the impact of factors such as humidity and temperature while expand-
ing the potential applications of hydrogen sensors. Those interested in this field will find
the composition of the structural elements of hydrogen-sensitive materials and the usage
scenarios of the sensor’s measurement range fascinating.

Optical hydrogen sensors can be essential in some hydrogen testing areas, such as
confined spaces. Based on the present trends, future hydrogen sensors will be better
equipped to adapt to the changing test environment. It is believed that in the future, the
optical hydrogen sensor will partially replace the existing hydrogen sensor and achieve
its advantages of high transmission speed, low cost, and anti-strong magnetism. As a
result, the sensor will become more versatile, making it easier to detect hydrogen leaks and
increase safety in hazardous areas.
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7.2. Outlook
7.2.1. More Reliable Hydrogen-Sensitive Materials

The mechanical stability of hydrogen-sensitive materials is a critical factor that needs
improvement to ensure reliable testing. Deposition or sputtering methods to load the
material can result in a thin hydrogen-sensitive layer, which makes it difficult to form
a dense material. This can cause cracks that affect stability, recovery time, and material
reuse. In some unique environments, adding Ti can improve mechanical strength [53].
However, there is a need for more reliable materials that can guarantee repeatable testing
in the future. One possible solution could be to use more ductile materials to reduce the
formation of cracks. This will enable reproducible hydrogen testing and more efficient
testing in multiple environments.

Polymers are a promising material for optical hydrogen sensors due to their reliability
and ability to form cavities in the sensing site. For instance, in one study, a polymer was
embedded in a Fabry–Perot hydrogen sensor, which resulted in fast hydrogen response
and high response values [58]. The MZI-based hydrogen sensor mentioned above also
contains polymer in its interior, which was treated with UV light to enhance its reliability.
This sensor demonstrated a similar wavelength shift in several repeated tests with good
repeatability. PDMS (polydimethylsiloxane) is a common polymer used in fiber-optic
hydrogen sensors to provide protection or performance enhancement. Figure 19 shows a
schematic diagram of a PDMS-doped hydrogen sensor. These polymers, such as PDMS,
must meet appropriate gas tightness to ensure gas sensing.
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7.2.2. Telemetry/Multifunction

Fiber Bragg gratings can perform telemetry due to the excellent filtering properties of
Bragg gratings. The principle of the test is that different Bragg gratings are inscribed on
a single fiber, and these Bragg gratings have different reflectance or central wavelengths.
These differences allow each FBG to be analyzed spectrally independently. This allows
the presence of multiple sensors on each fiber, thus forming one or more sensor arrays,
with the array arrangement schematic shown below (Figure 20). These arrays based
on Bragg gratings have been used to test liquid levels. Barone describes a method for
level measurement based on temperature variations (gases and liquids have different
temperatures) and using Bragg grating arrays [59]. This type of array may be used for
hydrogen testing. At the same time, the hydrogen-sensitive material is coated with different
FBGs (with different reflectance or central wavelengths), and the spectra can yield changes
in the central wavelength at multiple locations. This configuration would address hydrogen
testing at multiple leak points and extend the measurement distance.
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There are also some remote sensing methods for hydrogen, such as direct laser testing.
These methods have already achieved relatively good results in laboratory experiments.
Avetisov developed a laser-based hydrogen sensor that uses wavelength-modulated spec-
troscopy (WMS) for contact-free molecular hydrogen measurement, which can be used
in industrial environments for contact-free and accurate hydrogen measurement [61]. Ma
developed a highly sensitive hydrogen sensor based on light-induced thermoelastic spec-
troscopy (LITES) technology using a continuous wave and a distributed feedback diode
laser as the excitation source [62]. The laser emits in the 2.1 µm region and targets the
strongest hydrogen absorption line at 4712.90 cm−1. To remove noise, a robust shallow
neural network (SNN) fitting algorithm is introduced. Furthermore, a heterodyne H2-LITES
sensor was constructed, achieving a detection limit of 45 ppm.

7.2.3. Concentration Test

Some of the current techniques are rarely used to test high concentrations of hydrogen,
and this needs to be improved. Since the lower concentration limit of hydrogen explosion
is 4% by volume, hydrogen’s general fiber-optic measurement is selected at a concentration
of less than 4% to ensure safety. However, some studies have tested hydrogen above
4%, such as Ohodnicki’s 2015 study of a range of up to 100% hydrogen, but the sensor’s
response slows at levels above 10% [35]. In the future, more suitable materials will be used
to increase the range.
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