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A B S T R A C T   

In this study, the relationship between the operating conditions and the product yields and a control framework 
of the hydrocracking process was developed. The data were collected from a hydrocracking unit in a Chinese 
refinery. Principal component analysis was used to decrease the number of input variables. Then support vector 
machine, Gaussian process regression (GPR), and decision tree regression models were developed to establish the 
relationship above. The best model is GPR, whose Pearson correlation coefficient between the prediction value 
and the actual value is greater than 0.97 for all the product yields. Shapley additive explanations were performed 
to interpret the results of the GPR models. A control framework of the hydrocracking unit was then proposed 
based on the results above. The results show that the machine learning method is a valuable tool for predicting 
the yield of hydrocracking products, and the control framework proposed helps optimize hydrocracking product 
yields.   

1. Introduction 

Hydrocracking is an improved catalytic cracking technology that can 
inhibit dehydrogenation condensation reaction and reduce coke for-
mation. Fig. 1 is the flowchart of the hydrocracking unit studied in this 
paper. After mixing with the make-up hydrogen and the recycled 
hydrogen, the feedstock is fed into three reactors where the hydro-
cracking reactions happen. The outlet of R1 and R3 are fed in R2. The 
outlet of R2 is fed into the separator. In the separator, the products are 
separated with hydrogen. The hydrogen is sent to the HDS tower to 
recycle after cleaning, while the product is sent to the next separator. In 
the next separator, the products are separated from each other. The 
feedstock of hydrocracking is vacuum gas oil and other heavy oil. The 
products of hydrocracking are fuel gas (FG), light naphtha (LN), propane 
(PRO), liquefied petroleum gas (LPG), heavy naphtha (HN), diesel fuel 
(DF), and other light oil. The product yield can be manipulated flexibly 
by adjusting operating conditions. In China, the composition of the 
feedstocks of hydrocracking units fluctuates significantly with time and 
refinery location, which makes the product yield fluctuate remarkably. 

Hence, the relationship between the operating conditions and the yield 
of the products, which is hard to acquire by empirical methods, is 
needed. Therefore, a more accurate and effective method to establish the 
relationship above as well as a control framework of the unit are 
required to improve the robustness of the hydrocracking unit and meet 
the quality of products. 

The modeling method is an important and widely used approach to 
establishing the relationship above. The commonly used models are the 
mechanism model and the data-driven model (Song et al., 2020). 
Typical mechanism models include the structured lumping model, the 
discrete lumping model, the continuous lumping model, and the single- 
event model (Ancheyta et al., 2005). In the discrete lumping model, 
components are lumped according to the boiling point, and each lump is 
considered a pseudo-component (Umana et al., 2016). The continuous 
lumping model considers the mixture of hydrocarbons as a continuous 
distribution (such as the boiling point) (Becker et al., 2016b). In the 
structured lumping model, a vector is used to describe the hydrocarbon 
molecule, of which the elements represent the structural features suffi-
cient to build the molecule (Basak et al., 2004). First proposed by 
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Froment et al.(Baltanas and Froment, 1985; Baltanas et al., 1989; Fro-
ment, 1987; Hillewaert et al., 1988; Vynckier and Froment, 1991), the 
single-event model restructures the feed into individual molecules and 
then builds enormous reaction networks with thousands of possible re-
action path (Becker et al., 2016a). In the lumping method, the estima-
tion and adjustment of the parameters need enormous calculation and 
time, which makes it difficult to find optimal operating conditions 
(Elizalde et al., 2009; Lababidi and AlHumaidan, 2011). Single-event 
and other microkinetic models require an understanding of chemical 
kinetics and feed composition, which limits the application of the model 
(Ancheyta et al., 2005; Becker et al., 2016a; Elizalde and Ancheyta, 
2011; Iplik et al., 2020). 

The data-driven model aims to provide less model complexity and 
quicker prediction, which makes the model readily available online 
(Iplik et al., 2020). In data-driven models, machine learning algorithms 
are commonly used. The machine learning models that are used exten-
sively include decision tree regression (DTR), support vector machine 
(SVM), and Gaussian process regression (GPR). SVM is a supervised 
learning method with an excellent theoretical foundation and little need 
for data amount (Wu et al., 2008). Sharifi (Sharifi et al., 2019) used the 

data from the Tehran oil refinery in Iran and developed a SVM model to 
establish the relationship between the operating conditions and the 
yields of hydrocracking products. Based on Bayesian probability theory, 
GPR is a useful nonlinear regression model (Deringer et al., 2021). 
Iapteff (Iapteff et al., 2021) established the GPR model to study the 
hydrocracking process and predict diesel density. Fadzil (Fadzil et al., 
2021) developed decision tree regression and other models to predict 
the base oil product’s kinematic viscosity using the feedstock and pro-
cess conditions. However, the existing machine learning models of the 
hydrocracking process rarely use the data of the Chinese hydrocracking 
units as input data. Additionally, the composition of the feedstocks used 
in Chinese refineries is not as stable as that used in refineries in other 
countries. Therefore, the operating conditions used in Chinese refineries 
fluctuate remarkably to meet stable product yields and may have a wider 
range compared with those used in refineries in other countries. As a 
result, the machine learning models that are suitable for the hydro-
cracking units in other countries are trained with operating conditions 
that have a narrower range than those used in Chinese refineries. 
Therefore, the models above may not be suitable for the Chinese hy-
drocracking process. Hence, machine learning models suitable for the 

Fig. 1. The flow chart of the hydrocracking process.  

Fig. 2. Framework of data-driven prediction and control framework of hydrocracking product yields.  
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Chinese hydrocracking units and a control framework are urgently 
needed to develop the Chinese hydrocracking process. 

Fig. 2 shows the framework of data-driven prediction and control 
framework of hydrocracking product yields. First, the data were ac-
quired from the hydrocracking unit of a Chinese refinery. The data was 
cleaned by deleting the outliers using the 3-σ method and the blank data. 
Then principal component analysis (PCA) was performed to decrease the 
number of input variables. Three machine learning models (SVM, GPR, 
and DTR) were then developed to establish the relationship between the 
operating conditions and the yield of the products. Shapley additive 
explanations (SHAP) were performed to interpret the results of the best 
model of the three models above. A control framework of the hydro-
cracking unit was then proposed based on PCA, the best machine 
learning model above, and SHAP. 

2. Methods 

2.1. Data collection 

The adjustment of the hydrocracking process is generally accom-
plished by the reaction temperature, reaction pressure, volumetric space 
velocity, and hydrogen-to-oil volume ratio. The reaction temperature 
increases from the inlet to the outlet in the industrial adiabatic reactor, 
and the average reaction temperature of the entire reactor is used to 
characterize the temperature of the whole reactor. The reactor inlet 
pressure generally characterizes the reaction pressure. The volume 
space velocity is the volume of feedstock processed per unit volume of 
catalyst. It is usually characterized by the feedstock processing capacity 
as the catalyst loading in the industrial reactor is fixed. The hydrogen-to- 
oil volume ratio refers to the volume ratio of the amount of circulating 
hydrogen and fresh hydrogen to the fresh feed. Additionally, the con-
version rate is also an important feature. Conversion rate is the ratio of 
heavy oil to light oil and is the primary product distribution control 
method in hydrocracking units. 

In summary, eleven important features (the adiabatic reactor tem-
perature measured at three sites, the space velocity of commercial hy-
drocracking pretreatment catalyst measured at three locations, 
hydrogen consumption, the space velocity of commercial hydrocracking 
catalyst, VGO flow rate in two reactors, and conversion rate) are used as 
input variables. The yields of six products are used as output variables. 

Table 1 lists all the variables used in this paper and the abbreviations 
of the input variables. 

2.2. Features preprocessing 

2.2.1. Kaiser-Meyer-Olkin (KMO) test 
The KMO test was proposed by Kaiser (Kaiser, 1970), and could 

judge whether the input variables matrix is suitable for PCA. For j, the 
measure of sampling adequacy can be calculated by (Dziuban and 
Shirkey, 1974): 

KMO =

∑

k
k ∕= j

r2
jk

∑

k
k ∕= j

r2
jk +

∑

k
k ∕= j

q2
jk

(1)  

where q is the square of the off-diagonal elements of the anti-image 
correlation matrix SR− 1S and r is the square of the diagonal elements 
of the original correlations. 

Table S1 shows the relationship between the KMO result and the 
suitability for PCA. 

2.2.2. PCA 
PCA is performed to reduce the dimensionality of the input variables 

matrix. PCA was first proposed by Hotelling (Hotelling, 1933) and is 
likely the most popular multivariate statistical technique (Abdi and 
Williams, 2010). If the input matrix is N × d (N is the number of data and 
d is number of feature), PCA could reduce the dimensionality of the 
matrix to N × k(k ≤ d) without lose of information, and the k features 
are called the principal components. The principal components are the 
linear combination of the original features. Generally, k should make the 
cumulative contribution greater than 0.9. 

2.2.3. Data preprocessing 
396 pieces of data from January 2019 to January 2020 were 

collected from a Chinese refinery. The operating data of the reactor and 
other towers are acquired by the distributed control system (DCS), and 
the properties of the products are obtained by analyzing the sample of 
the corresponding product at a specific time daily. 

During production, missing data exists because of equipment dam-
age, human negligence, or parking. 377 data remain after deleting the 
blank data and cleaning the data by the 3-σ method. KMO test and PCA 
are then performed. Afterward, the dataset is randomly divided into the 
test set and training set (2:8). 

2.3. Machine learning methods 

Three machine learning methods were used in this paper. 
SVM is an effective machine learning method based on the structural 

risk minimization principle, VC dimension theory, and statistical 
learning theory (Wu et al., 2008). It was developed by Vapnik and Cortes 
(Vapnik, 1999). 

SVM regression projects training samples onto a high-dimensional 
plane to find a suitable hyperplane to divide the training samples 
(Cortes and Vapnik, 1995). The objective optimization function of SVM 
is (Li et al., 2022): 

min
w,b

1
2
‖w‖2

+C
∑m

i = 1
lε(f(xi) − yi) (2)  

where C is the regularization constant, w is the normal vector that de-
termines the direction of the hyperplane, represents the maximum 
margin for dividing the hyperplane, and lε is the insensitive loss func-
tion. 

Developed by Rasmussen and Williams (Williams and Rasmussen, 
1995), GPR is a non-parametric supervised machine learning model that 
could generate results in Gaussian distribution. Compared with other 
machine learning methods, GPR has the advantages of easy imple-
mentation, strong generalization ability and fewer adjustable 

Table 1 
All variables used in this paper and the abbreviations of input variables.   

Name Abbreviation 

Input 
variables 

Adiabatic reactor temperature − 1 ABT-1 
The space velocity of hydrocracking pretreatment-1 HP-1 
Adiabatic reactor temperature − 2 ABT-2 
The space velocity of hydrocracking pretreatment − 2 HP-2 
Adiabatic reactor temperature − 3 ABT-3 
The space velocity of hydrocracking catalyst HC 
The space velocity of hydrocracking pretreatment − 3 HP-3 
VGO (R1) VGO (R1) 
VGO (R3 feed) VGO (R3) 
Conversion rate CR 
Hydrogen consumption HCO 

Output 
variables 

DF yield – 
FG yield – 
HN yield – 
LN yield – 
LPG yield – 
Pro yield –  
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parameters, and the result of GPR is of probability significance. The 
Gaussian process is as follows (Xing et al., 2023): 

f (x) ∼ GP(m(x), kf (x, x′)) (3)  

where m(x) is the mean function and kf(x, x’) is the covariance function. 
Based on the binary tree structure, the decision tree is a non- 

parametric supervised machine learning method that has wide appli-
cations for both classification and regression tasks. The decision tree 
model has a clear structure and is simple to understand (Sun et al., 
2022). 

A decision tree model consists of three different nodes (Balogun and 

Tella, 2022). The root node is the first node of the tree. The interior node 
is split from the root node and represents the data feature of the model 
and the rules of decision. The leaf node is the result of the decision. 

2.4. Machine learning process 

PCA is performed using MATLAB to reduce the number of features. 
Then the dataset is randomly divided into the test set and training set 
(2:8). 

SVM, GPR, and DTR are completed using MATLAB R2021a. All 
eligible hyperparameters (as shown in Tables S2–S4) are optimized 

Fig. 3. Correlation coefficient heatmap: (a) input variables with input variables, (b) input variables with output variables.  
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using the grid search method for SVM, GPR, and DTR models. Addi-
tionally, 10-fold cross-validation is applied when establishing the 
models. For SVM and GPR, standardization of data is a hyperparameter 
that can be optimized among “True” and “False”. When the flag is 
“True”, the input data would be standardized using the algorithm that is 
shown in supporting information. The input data is not standardized 
when training DTR. However, standardization or not has little impact on 
the results of DTR (Lakshmi et al., 2016; Shreyas et al., 2016). 

Pearson correlation coefficient (COR) is calculated to plot a heatmap 
and evaluate the model performance. Additionally, mean absolute error 
(MAE) and root mean square error (RMSE) are used to assess the model 
performance. 

The formula of COR, MAE, and RMSE is shown in supporting 
information. 

2.5. SHAP 

To establish a control framework, a deep understanding of the in-
fluence of each input variable on the output variables is needed, which is 
difficult in data-driven models. Hence, a powerful and reliable tool is 
needed to interpret the process inside the machine learning models. 

Established by Lundberg and Lee (Lundberg and Lee, 2017), the 
SHAP method could interpret the results of the black box models and 
help researchers who have no knowledge about machine learning to 

Fig. 4. results of SVM: (a) on the training set; (b) on the test set.  

Fig. 5. results of GPR: (a) on the training set; (b) on the test set.  
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understand the relationships established by the models. SHAP has been 
successfully applied to interpret machine learning models in the petro-
chemical and coal chemical field without a benchmark sensitivity 
analysis method (Chakkingal et al., 2022; Steurtewagen and Van den 
Poel, 2021). 

The key step of the SHAP method is the calculation of the Shapley 
values in cooperative/coalitional game theory (Jas and Dodagoudar, 
2023). For a cooperative game with M players, the Shapley value of 
player j can be calculated as follows (Aas et al., 2021): 

ϕj(v) = ϕj =
∑

S⊆M\{j}

|S|!(M − |S| − 1)!
M!

(v(S ∪ {j}) − v(s)), j = 1, . . . , M,

(4)  

where M is the number of players, S ⊆ M = {1, ...,M} is a subset con-
taining |S| players, v(S) is a contribution function. This contribution 
function maps subsets of players to the real number. It is also called the 
contribution of coalition S. 

To explain the difference between the global average prediction and 
the prediction value y* = f (x*) of a machine learning model f (x) that is 
trained using a set 

{
yi, xi}

i=1,⋯,ntrain 
whose size is ntrain, f (x*) need to be 

presented using Shapley values (Aas et al., 2021): 

f (x*) = ϕ0 +
∑M

j=1
ϕ*

j (5)  

where ϕ0 = E[f(x) ] and ϕ*
j is the ϕj for the prediction x = x*. 

Fig. 6. results of DTR: (a) on the training set; (b) on the test set.  

Fig. 7. Comparison of the three models on the training set: (a) histogram, (b) heatmap.  
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After the calculation, SHAP can explain the global average prediction 
and consider the linear and nonlinear interactions based on the local 
interpretation of each record (Chehreh Chelgani et al., 2023). 

The SHAP analysis is completed through MATLAB. 

3. Result and discussion 

3.1. Statistical analysis between input variables and output variables 

Fig. 3 shows the correlation coefficient heat map. According to Fig. 3 
(a), the correlation coefficient of some input variables is high (such as 
HP-1 and HC, HP-3, VGO (R1)). The correlation coefficient between HP- 
1 and HC, HP-3 is greater than 0.97, which may be caused by the order 
of the process. The feedstock of HC and HP-3 is HP-1, which causes a 
strong linear relationship between them. HP-1 and VGO (R1) provide 
two reactants for the hydrocracking reaction. Considering factors such 
as economy, the consumption of HP-1 and VGO (R1) should meet the 
stoichiometric number of the reaction equation. Therefore, the corre-
lation coefficient between HP-1 and VGO (R1) is greater than 0.9. 

Therefore, it is reasonable to combine multiple input variables with 
strong linear correlation into one input variable and reduce the 
dimensionality of the input variables matrix. 

According to Fig. 3(b), the correlation coefficient between input and 
output variables is not high enough. Therefore, the nonlinear relation-
ship between input and output variables is needed. The result of the 
KMO test is 0.8214, which means the use of PCA is meritorious. Then the 
PCA is implemented, and the dimensionality of the input variables 
matrix is reduced from 11 to 7. 

3.2. Results of machine learning 

Fig. 4 shows the results of the SVM models. According to Fig. 4(a), 
the performance of the SVM models of the yield of LN and PRO is 
excellent on the training set but relatively bad for other products. The 
order of the six products from light to heavy is FG, LPG, PRO, LN, HN 
and DF. Therefore, the SVM model is more suitable for middle products 
rather than those that are too light or too heavy in this study. 

Fig. 5 shows the results of the GPR models. The GPR models show a 

Fig. 8. Comparison of the three models on the test set: (a) histogram, (b) heatmap.  

Fig. 9. SHAP values of the first day after the maintenance of the hydrocracking unit: (a) the yield of DF, (b) the yield of FG, (c) the yield of HN, (d) the yield of LN, (e) 
the yield of LPG, (f) the yield of PRO. 
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marvelous performance of all product yields on the training set ac-
cording to Fig. 5(a). In contrast, the DTR models show poor performance 
both on the training set and the test set as shown in Fig. 6. 

Fig. 7 and Fig. 8 show the COR, MAE and RMSE comparison histo-
gram and heatmap of the three models on the training set and test set, 

respectively. The GPR models show a better performance than the other 
two models, and the DTR method is not suitable for the hydrocracking 
process studied in this paper. 

The performance differs significantly when the different output 
variables are used in the same machine learning method. The nonlinear 
relationship between the input variables and different output variables 
may be different. One machine learning model may be suitable to 
describe some nonlinear relationships but unsuitable to describe others. 

The hyperparameter optimization results are shown in Tables S5–S7. 

3.3. SHAP analysis and the control framework of the hydrocracking unit 

3.3.1. SHAP analysis 
SHAP analysis is performed on the training set based on the GPR 

models. The hydrocracking unit studied in this paper was maintained 
from July 11 to 21, 2019. Fig. 9 shows the SHAP values on July 22, 2019, 
the first day after maintenance. The main negative impact on the yield of 
DF, FG, HN and LN comes from X4, which indicates the four product 
yields could be controlled simultaneously in the same direction. Addi-
tionally, X1 has a great positive impact on the yield of PRO while having 
little impact on the yield of other products, which indicates the adjust-
ment of X1 could control the yield of PRO with little interruption to 
other products. A similar relationship exists between X6 and the yield of 
LPG. 

Fig. 10 shows the summary of the local SHAP value on the whole 
training set. X4 has a great impact on the yield of DF, FG, HN and LN, 
which agrees with the results in Fig. 9. However, different from Fig. 9, 
X1 has a great negative impact on the yield of HN and LN on average. 

3.3.2. The control framework of the hydrocracking unit 
The control framework is developed based on the results of PCA, GPR 

model and SHAP. The relationship between the original input variables 
and the results of PCA is as follows:   

Fig. 10. SHAP values on the whole training set: (a) the yield of DF, (b) the yield of FG, (c) the yield of HN, (d) the yield of LN, (e) the yield of LPG, (f) the yield 
of PRO. 

Fig. 11. The control framework of the hydrocracking unit.  
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The control framework of the hydrocracking unit is shown in Fig. 11. 
Based on Eq. (4) and the GPR models, the yield of the products can be 
predicted. To increase or decrease the yield of single or multiple prod-
ucts, the adjustment direction of matrix X is determined based on the 
results of SHAP. Then the adjustment direction of the matrix Input is 
determined based on Eq. (4). 

An example of the adjustment of the yield of LPG is presented for 
better understanding. The centralized Input matrix on July 22, 2019, the 
first day after the maintenance of the hydrocracking unit is:   

According to Eq. (4), X is: 

X = | 10.2551 8.7567 − 2.9956 − 3.1405 1.5899 − 0.9957 0.0155 |

Based on the GPR model, the yield of LPG is predicted as 4.0183 %. 
The SHAP values on this point are shown in Fig. 9 (e). To increase the 
yield of LPG, X2 should be decreased. Therefore, X is adjusted to X’: 

X′ = | 10.2551 6 − 2.9956 − 3.1405 1.5899 − 0.9957 0.0155 |

Based on X’, the yield of LPG is predicted as 4.1253 %. And the Input’ 
is: 

The adjustment direction of the operating condition is determined by 
the comparison between Input and Input’. For example, the adiabatic 
reactor temperature measured at three sites should be decreased, which 
could be realized by reducing fuel consumption. 

4. Conclusion 

COR of the input and output variables is calculated to study the 
linear correlation between them. COR of the input variables shows a 
strong linear correlation between them, which indicates that it is 
reasonable to reduce the dimensionality of the input variable matrix. 
COR between the input and output variables shows a weak linear cor-
relation between them between the variables, which indicates the ne-
cessity of using nonlinear relationship tools. KMO test is performed to 

determine whether the input variables matrix is suitable for PCA. The 
KMO value is 0.8214, which indicates the input variables matrix is 
meritorious for PCA. Then PCA is performed to reduce the number of 
input variables. 

Based on the result of PCA, SVM, GPR, and DRT models are devel-
oped to establish the relationship between the operating conditions and 
the yield of the products. By the comparison of MAE, RMSE and COR, the 
GPR models are identified as the best models, whose COR of the yield of 
heavy naphtha and light naphtha are 1.0000 and 0.9860 on the training 
set, respectively. Additionally, the DTR models are unsuitable for the 
hydrocracking unit studied in this paper. SHAP analysis is then per-
formed based on the GPR models. On the first day after the maintenance 
of the hydrocracking unit, X4 shows a similar negative impact on the 

yield of diesel fuel, fuel gas, heavy naphtha and light naphtha, which 
indicates these four product yields could be controlled simultaneously in 
the same direction. The SHAP values on the whole training set agree 
with the result above. A control framework of the hydrocracking unit is 
then proposed based on PCA, the GPR models, and SHAP. 

Input • Coeff T = X

Coeff =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

− 0.034 0.1598 0.3321 − 0.0899 − 0.4072 0.141 0.818

− 0.0045 0.0053 − 0.004 0.0008 − 0.0005 0.0013 − 0.0004

− 0.0233 0.1411 0.3615 − 0.0764 − 0.3378 0.71 − 0.4742

− 0.0015 0.0046 0.0054 0.0042 0.01 0.0031 0.0034

− 0.0809 0.3214 0.5529 − 0.2474 − 0.1619 − 0.6436 − 0.2874

− 0.0051 0.0081 0.0003 0.0036 0.0067 0.0033 0.002

− .00376 0.0597 0.002 0.027 0.0498 0.0247 0.015

− 0.541 0.6577 − 0.4902 0.056 − 0.166 0.008 − 0.0301

− 0.1212 0.3694 0.408 0.3149 0.7313 0.1825 0.1258

0.0084 − 0.0781 0.112 0.90545 − 0.357 − 0.1666 − 0.0793

0.8264 0.5289 − 0.1842 0.0448 − 0.0376 − 0.0024 − 0.0076

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Input = |ABT − 1 HP − 1 ABT − 2 HP − 2 ABT − 3 HC HP − 3 VGO(R1) VGO(R3) CR HCO |

X = |X1 X2 X3 X4 X5 X6 X7 |

(6)   

Input = | − 0.4371 0.0153 − 1.0976 0.0116 1.485 0.0221 0.1637 1.2287 0.6716 − 4.1787 13.4594 |

Input′ = | − 0.8776 0 − 1.4865 0 0.5991 0 0 − 0.5845 − 0.3193 − 3.9635 12.0014 |
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More accurate models can be developed through the expanding of 
the dataset and the practice of the proposed control framework can be 
performed in future work. 
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